Desarrollo de detectores Cherenkov en agua para la detección de material radiactivo

(Presentación parcial de resultados)

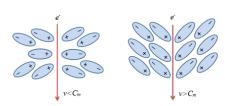
Alejandro Said Núñez Selin

alejandro.nunez@ib.edu.ar

Iván Sidelnik

ivan.sidelnik@cab.cnea.gov.ar

Hernán Gonzalo Asorey


asoreyh@gmail.com

Departamento de Física de Neutrones - Centro Atómico Bariloche Instituto Balseiro Universidad Nacional de Cuyo Comisión Nacional de Energía Atómica

¿Qué es la radiación Cherenkov?

Proceso que ocurre cuando una partícula cargada atraviesa un medio con una velocidad mayor a la luz en ese medio. Los electrones de los átomos del medio son acelerados bajo la acción del campo eléctrico de la partícula incidente.

- Si $v < \frac{c}{n}$: Los dipolos se crean simétricamente alrededor de la partícula e interfieren destructivamente.
- Si $v > \frac{c}{n}$: Se genera una polarización no simétrica y se emite coherentemente la radiación.

¿Qué es la radiación Cherenkov?

Se puede obtener la energía cinética umbral de la partícula en un medio material de índice n para producir este tipo de radiación:

$$T_{th} = mc^2 \left(\frac{n}{\sqrt{n^2 - 1}} - 1 \right) \tag{1}$$

Siguiendo la teoría de Frank y Tamm se obtiene la expresión para las pérdidas de energía por efecto Cherenkov, la cual si se transforma en cantidad de cuantos emitidos por cm:

$$\frac{dN}{dx}(\lambda_1, \lambda_2) = 2\pi \frac{Z^2}{137} \left(1 - \frac{1}{\beta^2 n^2} \right) \left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1} \right) \left[\text{cuantos/cm} \right]$$
 (2)

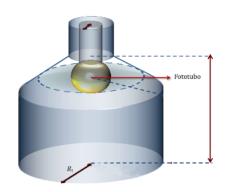
¹ (IETIM Frank and Ig Tamm. "Coherent visible radiation of fast electrons passing through matter". In: Selected Papers. Springer, 1991, pp. 29-35 b + 4 = + 4 = +

Qué es la radiación Cherenkov?

Qué sucede con las partículas que no tienen carga eléctrica? No hacen Cherenkov directamente, en cambio:

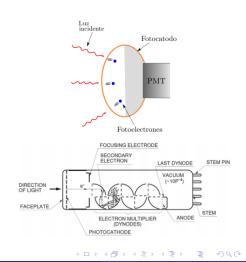
- Los gammas pueden hacer efecto Fotoeléctrico o Compton con algún electrón atómico, el cual si supera el umbral Cherenkov produce esta radiación (más probable los generados por Compton).
- Neutrones (en agua), luego de ser termalizados son absorbidos por un átomo de Hidrógeno:

$$n + H \rightarrow D^* + \gamma$$
 (2.22MeV) (3)

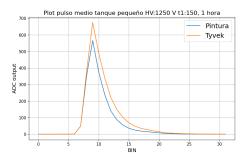


Noooo, you can't travel faster than light, I'm the fastest thing in the universe haha, cherenkov radiation go woosh

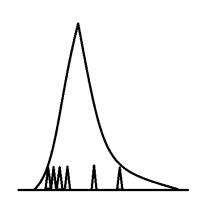
Water Cherenkov Detector (WCD)


- Suelen tener un gran tamaño (AUGER 12m³, LAGO 1m³).
- PMT es instalado en la parte superior del detector y orientado hacia el volumen de la sustancia.
- Son relativamente rápidos, los tiempos están limitados por el PMT y la electrónica.
- Discriminación inherente.
- Recubrimiento interno para difundir y reflejar a los fotones cherenkov.
- Poca cantidad de fotones Cherenkov producidos.

Conformación del pulso en el detector


Un PMT contiene un fotocátodo, varios dínodos y un ánodo en una envoltura de vidrio sellada con un alto vacío en su interior

- Los fotones ingresan al tubo y excitan electrones.
- El número de fotoelectrones se multiplica mediante el efecto de emisión de electrones secundarios.
- La emisión secundaria se repite varias veces (ganancia).
- Los electrones multiplicados son recolectados en un ánodo al final del tubo.
- La electrónica de detección detecta un pico de corriente.



Conformación del pulso en el detector

Se utilizaron 2 tanques pequeños, con las mismas condiciones electrónicas pero diferente revestimiento interno.

Los picos de corriente son los que conforman el pulso.

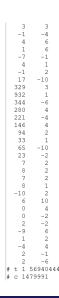
El ecosistema LAGO utilizado consiste en un repositorio git², que contiene el código fuente, tanto VHDL como C, de los proyectos, ip-cores, ejemplos de uso y pruebas en general realizados para el sistema de adquisición de datos del Proyecto LAGO. Existen cuatro branches dentro del repositorio:

- master
- 2020.2
- 2016.2
- develop

Basta con clonar el branch master para tener el ecosistema funcional. El resto de los branches son de desarrollo y si bien se pueden usar, normalmente son para realizar pruebas y puede que no todo funcione. El código es open-source con licencia 3-Clause BSD License.

Usage: ./lago <action> <register> <value> [options]

Actions:


- -a Get all registers status
- s Set registers
- -f Start DAQ and save data to file
- -o Start DAQ and send data to stdout
- -g Get GPS data
- -t Get Pressure and Temperature data
- -i Initialise registers to default values
- -x Read the voltage in the XADC channels
- -v Show DAQ version

Registers:

- t1, t2 Specify triggers 1 and 2
- sc1, sc2 Specify scaling factor 1 and 2
- hv1, hv2 Specify high voltages

Header archivo de salida de la adquisición

```
# v 5
# # This is a LAGO raw data file, version 5
   It contains the following data:
                       : line with values of the 2 ADC for a triggered pulse
      <N1> <N2>
      # t. <C> <V>
                      : end of a trigger
                       gives the channel trigger (<C>: 3 bit mask) and 125 MHz clock count (<V>) of the trigger time
                       : internal trigger counter
      # c <C>
      # x f <V>
                      : 125 MHz frequency
      # x t <V>
                       : temperature value
      # x p <V>
                      : pressure value
      # x r1 <V>
                      : pulse rate at channel 1
     # x r2 <V>
                     : pulse rate at channel 2
      # x h <HH:MM:SS> <DD/MM/YYYY> <S> : GPS time (every new second, last number is seconds since EPOCH)
     # x s <T> C <P> hPa <A> m : temperature <T>, pressure <P> and altitude (from pressure) <A>
      # x g <LAT> <LON> <ALT> : GPS data - latitude, longitude, altitude
      # x v <HV1> <HV2>
                             : HV voltages for channels 1 and 2
      # x b <B1> <B2> <B3>
                               : baselines (NOT IMPLEMENTED IN LAGO)
# # In case of error, an unfinished line will be finished by # E 000
# # Followed by a line with # E <N> and the error message in human readable format, where <N> is the error code:
      # E 1 : read timeout of 2 seconds
      # E 2 : too many buffer reading tries
      # E 3 : unknown word from EPGA
# # Current registers setting
# x c T1 150
# x c T2 8190
# x c HV1 1599.7 mV
# x c HV2 7.7 mV
# x c SC1 1
# x c SC2 1
# # This file was started on lago
# # Machine local time was Wed Dec 31 22:37:54 1969
# # WARNING, there is no GPS, using PC time
```


- Un evento sin procesar posee 2 columnas con 32 valores de salida del ADC para cada canal.
- Se comienza a digitalizar a partir de los 8 valores anteriores al disparo del trigger (un canal a la vez), seguido por los 24 valores restantes.
- Cada valor (bin) posee un ancho de 8 ns, para un total de 256 ns de ancho temporal.
- Para conformar la línea base del evento, se realiza el promedio de los valores anteriores al disparo del trigger y se resta dicha línea a todo el evento.

Capacidades y limitaciones del ecosistema LAGO

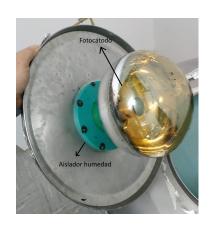
Capacidades

- Información detallada sobre el evento sampleado
- Información sobre el tiempo muerto del detector
- Información sobre el tiempo entre eventos consecutivos
- Total acceso de los datos para su procesamiento
- Buena experiencia de usuario

Limitaciones

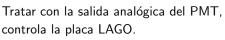
- Los archivos pueden llegar a ser muy pesados ($\approx 1 \text{GB} \to 5 \text{ min}$)
- Limitación en la cantidad de eventos/segundo máximos que se pueden adquirir ($\approx 10^4$)
- El ecosistema afecta la eficiencia del detector para fuentes de radiación (alto rate)
- No tan buena experiencia de desarrollador

Características del detector utilizado


Departamento de Física de Neutrones, Centro Atómico de Bariloche

Características del detector utilizado

PMT 9" XP1802 utilizado



Se usa por diseño (AUGER) la señal del último dínodo amplificada la cual extiende el rango dinámico del PMT.

Características del detector utilizado

Electrónica asociada al sistema de detección

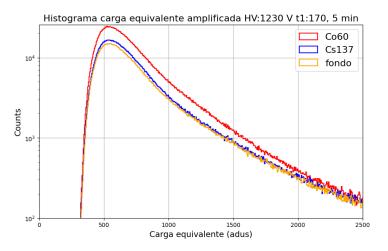
3

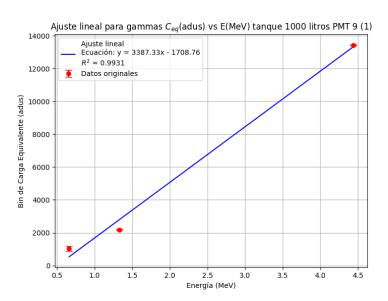
Principalmente entrega las tensiones a la fuente de alta del PMT pero tiene otras funcionalidades

Salidas tensión

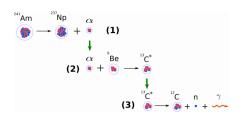
³https://redpitaya.com

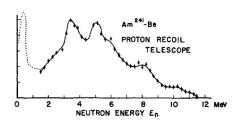
Mediciones con fuentes radiactivas





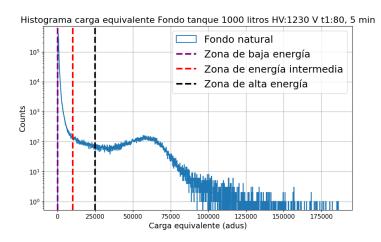
Deposición de energía en el detector


Una partícula incidente puede depositar desde 0 hasta toda su energía en su paso por el detector.



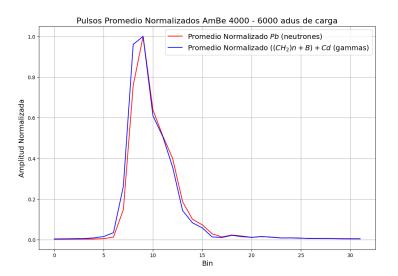
Puntos de calibración del detector

Uso de agua pura en WCD para fuentes de neutrones



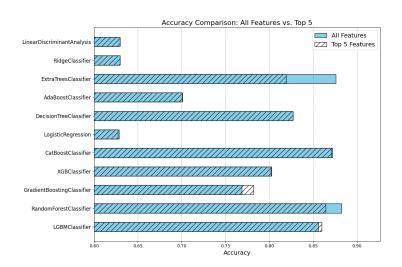
- Toda fuente de neutrones sin importar lo policromática que sea, al termalizarse en el agua se convierte en una fuente gamma de 2.22 MeV.
- Si una fuente de radiación X posee un punto de calibración por encima de 2.22 MeV, podemos asumir que se trata de una fuente emisora de neutrones.

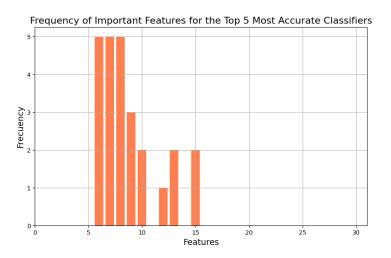
20 de noviembre del 2024


Eficiencia del detector

Eficiencia del detector

Fuente	Tipo de radiación	Trigger (adus)	Energía (MeV)	$\epsilon_{tot}(\%)$	$\epsilon_{int}(\%)$
Cs ₁₃₇	Gamma	60	0.6617	0.34	1.45
Co ₆₀	Gamma	80	1.17, 1.33	0.65	2.77
²⁴¹ AmBe (<i>Pb</i>)	Neutrones	440	2.22	0.34	1.45
241 AmBe $(((CH_2)n + B + Cd))$	Gamma	650	4.44	0.36	1.53
²⁴¹ AmBe (desnuda)	Neutrones, Gamma	750	2.22, 4.44	0.13	0.55


Diferenciación de pulsos de neutrones y gammas



Diferenciación neutrones de gammas

Diferenciación neutrones de gammas

4

Trabajo futuro

- Ingenería de características.
- Ajuste de hiperparámetros.
- Uso de ensembles o modelos más complejos.
- Obtener un análisis más profundo de dicha diferenciación simulando el sistema de detección.

