

SiPM and Cherenkov radiation detectors in water

Anderson Fauth

State University of Campinas – UNICAMP, Brazil fauth@unicamp.br

Encuentro CyTED LAGO INDICA Nov 18-20, 2024 Esc Física Universidad Industrial de Santander, Bucaramanga, Colombia

Water-Cherenkov Detectors

High Energy Cosmic Rays and Neutrinos Physics

Observatory Pierre Auger

Latin American Giant Observatory

High Altitude Water Cherenkov Observatory HAWC

The Large High Altitude Air Shower Observatory LHAASO

Water-Cherenkov Detector

Cherenkov radiation in water

 $n_{water} = 1,33$

$$\theta_{max} = \arccos\left(\frac{1}{n}\right) = 41,3^{o}$$

minimum values to produce Cherenkov radiation

	P (MeV/c)	E (MeV/c²)
Muon	121	160
Electron	0.58	0.77

• 3 PMTs **9**["] Photonis XP1805

- 2000 Volts DC power supply
- 1140 liters of ultrapure water
- Tyvek liner

Tanca – LAGO UNICAMP

SiPM

- Low bias voltage (< 60 V)
- High Gain: 10⁶ order
- High Quantum Efficiency (~ 50%)
- Geiger mode operation provides sub-nanosecond timing
- Excellent SNR, high single photon resolution
- Low radioactivity
- Not damaged when exposed to light
- No aging
- But SMALL!

C-Arapuca

C = Cherenkov

Arapuca is a word from the Tupi-Guarani language of the native peoples of Brazil, meaning a device used to trap wild animals

- dichroic shortpass 400 nm Omega filter
- wavelength shifter Eljen EJ-286
- eight SiPMs Hamamatsu S13360-6050VE (6x6mm)
- Vikuit 3M

C-Arapuca window

Cherenkov photons with wavelengths up to 400 nm enter the box.

Cherenkov radiation spectrum in water

Dichroic filter transmission

C-Arapuca wavelength shifter

- The EJ-286 absorbs photons and emits others with wavelengths above 400 nm;
- The EJ-286 is also a light guide that directs the photons to the SiPMs;
- The photons that do not reach the SiPMs directly are reflected by the dichroic filter and the Vikuit and have additional chances to reach the SiPMs.

The EJ-286 emits in the region of maximum efficiency of the SiPM.

C-Arapuca assembling

The metal box is made of aluminum with dimensions of (100.0×130.0×30.0) mm and a window of (70.0×93.0) mm.

The Tank

- Two C-Arapuca prototypes were installed inside a stainless-steel tank filled with **550 liters** of ultrapure deionized water with an impedance of **18.25 MΩ**.
- A bag made of **Tyvek**[™], an excellent material for diffuse photon reflection, was placed at the bottom and along the side walls of the tank to reflect Cherenkov photons generated in the downward direction.

Before installation in the tank

We used an Arduino UNO with an AM2302 DHT22 temperature and humidity sensor installed inside the C-Arapuca.

C-Arapuca's pulse with a 395 nm UV **LED** in the dark box.

Data acquisition

A **plastic scintillator** (39x39 cm²) above the tank and another below

- pulse coincidence within 80 ns defines the data acquisition **trigger**
- trigger (vertical muons) rate = 0.4 Hz

CAEN SpA digitizer, model DT5730S, 14-bit, 500 MS/s
 APSAIA module produced by AGE Scientific srl
 (amplifier 20x or 40x and power supply 30-60 VDC)

Jaci and Guaraci prototypes

WLS scintillation pulse

C-Arapuca amplitude spectra

- Two Apsaia amplifier gains and three voltages over the breakdown
- Sum of the two C-Arapucas pulses (~ 5" PMT)

C-Arapuca version2

- two dichroic filters by Ashai 400
 nm, 50 x 50 x 1 mm³
- quartz window **127** x **72** x 2 mm³
- wavelength shifter with paint
 WLS Eljen EJ-298
- Two SiPM arrays Hamamatsu , (4x4) 13 x 13 mm² S14161-3050HS-04
- Electronics, amplifier inside the C-Arapuca (motherboard and daughterboard)

C-Arapuca version 2

Multiuser Lab – IFGW UNICAMP

Painting the wavelenght shifter

Wavelength shifting paint EJ-298, $\,\sim$ 50 μm

Blade-Coating Equipment https://www.autocoat.com.br/en Startup at UNICAMP Fluorimetro Horiba Chemistry Institute UNICAMP

DeKTaK 150 Profilometer <u>https://sites.ifi.unicamp.br/lamult/</u> Multiuser Lab – IFGW UNICAMP

Ana Paula Mendonça –pos-doc Lab. Leptons

Conclusion

- We demonstrate that the C-Arapuca photon detection concept is effective, achieving a counting efficiency of approximately 80% for muon detection with the studied tank and prototype.
- The C-Arapuca design compensates for the reduced area of SiPMs by increasing the effective area of the photodetector.
- The C-Arapuca presents a new approach to detecting Cherenkov photons in water, offering advantages such as lowvoltage operation, compact size and design flexibility.
- Future WCDs could use this new concept in cosmic ray and astrophysics experiments.
- We are planning to build the next prototype of the C-Arapuca with a WLS coating instead of the bar and a new front-end pre-amplifier board.

Tank you for your attention

I would like to thank **Universidad Industrial de Santander** for their wonderful hospitality and the organization of the Encuentro CyTED LAGO INDICA, especially **Prof. Luis Nunes**.

This work received support from the São Paulo Research Foundation (FAPESP), grant 2021/13538-5. ACF acknowledges the Brazilian National Council for Scientific and Technological Development (CNPq), grant 308231/2021-0. We thank Roberto F. dos Santos, Andre L. Pissolatti and Cezar R. A. dos Santos for their technical support

Backup slides

Todos canais Eventos = 0 up to 999 AUV VIIAIIIU 16000 14000 12000 PMTs Primeiros 1000 pulsos 10000 40x,3V 8000 6000 CArapuca 4000 2000 ٥Ŀ 100 200 300 400 700 800 500 600 Ticks(1 tick = 2ns) $\varepsilon_{threshod} = \frac{N_{threshod}}{N_{trigger} - N_{accidental}},$ $N_{accidental} = 2 C_1 C_2 T = 0.000144 Hz$ $C_1 = C_2 = 30 Hz, T = 80ns$ $N_{trigger}$ = 0.4 Hz

Jaci's breakdown voltage is 52.1 V DC and Guaraci's is 52.2 V DC for the room temperature of 25°C.