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Adiabatic inspiral and heuristic view of the plunge1

▶ Geometrized units and Boyer-Linquist coordinates (t, r, θ, ϕ).
▶ Effective potential, m ≡ TP mass, M ≡ BH mass, a = S/M,

Veff = 1 −
2M
r

+
[L2/m2 − a2(E2/m2 − 1)]

r2
−

2M(L/m − aE/m)2

r3

▶ Particle initially at a circular orbit

Ecirc/m = (r2 − 2Mr + aM1/2r1/2)/[r(r2 − 3Mr + 2aM1/2r1/2)]1/2

▶ Test particle falls due to GW radiation: sequence of circular orbits.
▶ Slow energy-angular momentum losses: adiabatic equation, ṙ = −ĖGW/(dEcirc/dr),

dEcirc/dr
∣∣
LCO = 0. At LCO, Ecirc reaches a minimum: ṙ|LCO → ∞: PROBLEMS AT

LCO!.
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LCO!.

2 4 6 8 10 12
r/M

0.0

0.2

0.4

0.6

0.8

1.0

V e
ff

a/M = 0.9
LLCO

1.1LLCO

a/M = 0.0
0.95LLCO

LLCO

1.1LLCO

1Rodriguez, Rueda & Ruffini, Astronomy Reports, 62, 940
2 / 27



Adiabatic inspiral and heuristic view of the plunge1

▶ Geometrized units and Boyer-Linquist coordinates (t, r, θ, ϕ).
▶ Effective potential, m ≡ TP mass, M ≡ BH mass, a = S/M,

Veff = 1 −
2M
r

+
[L2/m2 − a2(E2/m2 − 1)]

r2
−

2M(L/m − aE/m)2

r3

▶ Particle initially at a circular orbit

Ecirc/m = (r2 − 2Mr + aM1/2r1/2)/[r(r2 − 3Mr + 2aM1/2r1/2)]1/2

▶ Test particle falls due to GW radiation: sequence of circular orbits.
▶ Slow energy-angular momentum losses: adiabatic equation, ṙ = −ĖGW/(dEcirc/dr),
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Hamiltonian approach and helicoidal drifting sequence (HDS)2

▶ The Hamiltonian of the test particle of mass m in the field of the Kerr black hole of mass
M is given by

H = −pt = −Nipi + N
√

m2 + γijpipj, (1)

where N = 1/
√

−g00, Ni = −gti/gtt , γij = gij − gtigtj/gtt .
▶ Dynamical equations are:

ṙ =
∂H
∂pr

Ω ≡ ϕ̇ =
∂H
∂L

, (2)

ṗr = −
∂H
∂r

+ Fnc
r ṗϕ = −Fnc

ϕ (3)

where Fnc
r and Fnc

ϕ are the radial and azimuthal non-conservative radiation-reaction
forces.

▶ Particle falls due to the loss of energy and angular momentum, and explicit contribution of
the conservative radial force.

▶ Adiabatic parameter η ≡ Ω̇/Ω2 ≈ ṙ/(rΩ) ≪ 1.
▶ All dynamical variables are finite at LCO

2Rodriguez, Rueda & Ruffini, Astronomy Reports, 62, 940
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How to calculate ĖGW and L̇GW? GWR from circular Orbits on Kerr Spacetime

▶ Test particle in a stable circular orbit at r and co-rotating with the BH

Ωcorot =
M1/2

(r3/2 + aM1/2)
(4)

▶ The energy and angular momentum fluxes to ∞ are given in terms of ZH
lmω , which are

obtained from BH perturbation theory [Teukolsky, ApJ, 185, 635 (1973)], namely by
solving the Sasaki-Nakamura Eq. [Sasaki & Nakamura, Phys. Lett. A, 86, 68 (1982)]:

dE
dt

=
∞∑
l,m

|Z̃H
lmω |

2

4πω2
m

, (5)

dL
dt

=
∞∑
l,m

m|Z̃H
lmω |

2

4πω3
m

, (6)

▶ The GW angular frequency for each multipole ωm = mΩ

▶ NO RADIATION FROM CIRCULAR ORBITS INSIDE THE LCO.
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Energy Flux
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Energy fluxes to infinite test particle in a circular orbit. Rodriguez, Rueda & Ruffini, Astronomy Reports,
62, 940

▶ For quasi-circular, adiabatic motion we have:

Fnc
r = 0, (7)

Fnc
ϕ = −

1
Ω

dE
dt

. (8)
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Test particle dynamics in HDS approach

▶ Test particle trajectories ν = mM/(m + M)2 = 0.01, for different a/M:
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▶ The dynamics includes the contribution of the radial momentum which is not negligible
near the LCO.

▶ tplunge is defined as the time when the particle crosses the LCO in the HDS.
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Left: ratio −pr/(pϕ/m) = pr/j for a/M = 0.9. Right: Adiabatic parameter. Rodriguez, Rueda, & Ruffini,
Astronomy Reports, 62, 940 (2018) 6 / 27



Transition to plunge: comparison with other approaches

▶ Taylor expansion of Veff around the LCO3:

r̈ = ∂3
r F|LCO(r − rLCO)

2/4 + ∂rEF|LCO(E − Ecirc
LCO)/2 + ∂rLF|LCO(L − Lcirc

LCO)/2,

where, F := r4 Veff
V2

t
, Vt =

aL
m + r2+a2

m(r2−2Mr+a2)
[E(r2 + a2)− La]

▶ Energy and angular momentum losses evaluated at LCO (radiab(t0) = rLCO, t0 ̸= tplunge)

(E − Ecirc
LCO) = (t − t0)ĖGW|LCO, (L − Lcirc

LCO) = (t − t0)Ω−1ĖGW|LCO.
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Comparison a/M = 0.9. See Rodriguez, J. F., Rueda, J. A, and Ruffini, R, Astr. Rep., 2018, 62, 940

▶ GW radiation at the same rate as the LCO, long after the test particle has passed it.
3Ori & Thorne, Phys. Rev. D, 62, 124022 (2000); Sundararajan, Phys. Rev. D, 77, 124050 (2008)
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Comparison with other works

▶ The energy “deficits” at the end:

∆Edef = Ecirc
LCO − Eformalism

plunge,f (9)

▶ EHDS
plunge,f := H(tplunge) < Ecirc

LCO

(Ef-ELCO )OT
(Ef-ELCO )HDS

(Lf-LLCO )OT
(Lf-LLCO )HDS
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Our work: Rodriguez, J. F., Rueda, J. A, and Ruffini, R, Astronomy Reports, 2018, Vol. 62, No. 12, pp.
940–952. Comparison with Ori & Thorne (2000) (left) and NR from SXS catalog
https://www.black-holes.org/ (right)

▶ In the HDS there is less radiated energy (angular momentum) than in the results of Ori &
Thorne (2000).
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Semi-analytic approach to binary black holes (comparable masses)

▶ Motivation: work of Aninos et al. (1995) (among other works), also as a “working
hypothesis”; Newtonian center-of-mass point of view

Principles of “test particle waveform” formalism
1. Test particle orbits on Kerr spacetime: HDS approach
2. GW emission back-reaction given by circular orbits up to LCO
3. Plunge geodesic
4. From test particle to comparable masses m1/m2 ≈ 1: mtest 7→ µ, M 7→ mtot = m1 + m2

“Test particle” waveform construction
1. The gravitational waveform can be constructed from “circularized waves”:

1
2

(
h+ − ih×

)
= −

1
R

∑
l,m

ZH
lmω

ω2
m

−2Slm(Θ)eimΦe−iωm(t−R∗)
, (10)

where R is the distance to the observer, Θ is the angle between the axis of rotation and the observer, Φ
is the azimuthal coordinate of the orbiting body at t = 0; R∗ is the Kerr “tortoise”.

2. The complex number Zlmω evolves with time, inducing a variable wave amplitude and phase shift.

(r(t), ϕ(t)) “test particle” trajectory coordinates

,
ωm(t − R∗

) 7→ mϕ(t − R∗
).
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“Test particle” and NR waveforms

Intrinsic phase-time parameter Qω = ω2/ω̇

Working hypothesis
HDS + Newtonian center-of-mass

4750 5000 5250 5500 5750 6000 6250
t/M

0.5
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[h
22

]
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Numerical Relativity
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22
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Numerical-relativity waveform BBH:0230, m1 = m2 and initial spins a1/m1 = a2/m2 = 0.8, final Kerr
BH spin af /Mf = 0.907516. Intrinsic time-domain phase difference evolution ∆Qω = |QTP

ω − QNR
ω |

.
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Comparison with NR

▶ BBH numerical relativity simulations with equal masses components, m1/m2 = q. Initial
components can have equally aligned spins a1/m1 = a2/m2. We studied the special case
without spin (two Schwarzschild BHs).

▶ Fitting factor F,

F ≡ (h1|h2)/
√

(h1|h1)(h2|h2), (h1|h2) ≡ 4Re

[∫ ∞

0
h1(f )h̃2(f )/Sn(f )df

]
,

Simulation ai/mi af /Mf aeff/Mf F
BBH:0001 1.209309 × 10−7 0.686461 0.36 0.96
BBH:0157 0.949586 0.940851 0.99 0.93
BBH:0228 0.600000 0.857813 0.80 0.972
BBH:0230 0.800000 0.907516 0.9075 0.993

Rodriguez, J. F., Rueda, J. A. and Ruffini, R, JCAP, 2018, 030
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Spin-less merging components

▶ BBH simulations with spin-less initial components and different mass ratios q < 1
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SXS spinless BBH simulations https://www.black-holes.org/, BBH:0169,
q = 1/2, aeff = 0.33; BBH:0169, q = 1/3, aeff = 0.329; BBH:0169, q = 1/4, aeff = 0.25.
Rodriguez, J. F., Rueda, J. A. and Ruffini, R, JCAP, 2018, 030

“FRAME DRAGGING” DUE TO THE ORBITAL ANGULAR MOMENTUM
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Incompressible ellipsoidal figures of equilibrium

▶ Classical work of Chandrashekar, Ellipsoidal Figures of Equilibrium (1969)
▶ Evolution of incompressible self-gravitating object driven by GW reaction =⇒ conserved

quantity: circulation along the equator. Bonnie, D. Miller, The Astrophysical Journal, 187,
606, (1974).

▶ Evolution along Riemann S-type (self-gravitating object supported by rotation and internal
motions) sequence with constant circulation C,

C = πa1a2
(
ζ + 2Ω

)
,

where Ω spin and ζ vorticity, and they are parallel.

�

a1

a2a3

�

x

y

z

A compressible ellipsoid characterized by the polytropic index n, λ2 := a2/a1, λ3 := a3/a1, Ω and
vorticity ζ
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Compressible models: polytropic EOS

▶ Generalization to objects whose internal matter is described by a polytropic EOS [Lai,
Rasio & Shapiro, ApJ S, 88, 205 (1993)].

▶ Time unit τCEL = (πGρ̄0)
−1/2, where ρ̄0 = M/(4/3πR3

0), R0 := radius of the
non-rotating polytrope (same n) with the same mass.

▶ Evolution a la Landau-Lifshitz
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Quasi-static evolution of a CEL with n = 1 and different circulations C/π = 1.95, 2.39, 2.92
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Polytropic index n → 3: chirping ellipsoid (CEL)

▶ New phenomena: Early period increasing GW frequency and amplitude
▶ typical frequency is ∼ 1 mHz. Space-based interferometers: LISA, TianQin.

0.00

0.01
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h 0
D

(R
0/M

2 )(
c4 /G

)

0.005 0.010 0.015
f (Hz)

102

104

106

108

GW
 (y

r)

0.20
0.23
0.25
binary

GW strain and timescale of a CEL with n = 2.95, M = 1.0 M⊙ which is the same of the non-rotating
spherical star with radius R ≈ 6000 km. The value of the circulation for the continuous, dashed and dotted
line are C = (κnMC/5π)/(GM3R0)

1/2 = (0.20, 0.23, 0.25), respectively. Rodriguez, Rueda, Ruffini,
Zuluaga, Iglesias-Blanco and Loren-Aguilar, JCAP 2023.
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Intrinsic GW phase-time evolution of CELs

▶ CELs are quasi-monochromatic
▶ Intrinsic phase-time parameter Qω ≡ ω2

ω̇
= dϕ

d lnω
= 2π dN

d ln f

10 3 10 2 10 1 100

/ ( G 0)1/2

101

103

105

Q
5/

2
2.8
2.9
2.95

Figure 1: Intrinsic phase-time of CELs with n = 2.8, 2.9, 2.95. Rodriguez, Rueda, Ruffini, Zuluaga,
Iglesias-Blanco and Loren-Aguilar, JCAP 2023.

▶ Intrinsic phase empirical fits,

QCEL
ω ≈

An

C5/2

[
ω

√
πGρ̄0

]α
C = GMCEL/(c2R0)

▶ Intrinsic phase-time evolution of Newtonian binaries

Qbin
ω =

5
3

2−7/3(ωMchirp
)−5/3
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CELs parameters

▶ Polytropic structure constants (n, κn, k1, k2, k3) and the Qω power-law empirical fitting
parameters.

n κn k1 k2 k3 An α
1.0 0.65345 0.5 0.81289 2.2472 2.68 −1.081
2.0 0.38712 1.1078 0.71618 1.6562 4.003 −1.222
2.5 0.27951 1.4295 0.67623 1.4202 4.060 −1.447
2.7 0.24109 1.55971 0.66110 1.33194 5.926 −1.365
2.9 0.20530 1.69038 0.64630 1.24621 4.940 −1.571
2.95 0.19676 1.72309 0.64265 1.22511 4.369 −1.614
2.97 0.19340 1.73617 0.64119 1.21669 3.760 −1.640
2.99 0.19005 1.74925 0.63973 1.20829 3.817 −1.652

▶ In the limit n → 3, α → −5/3: CEL-binary equivalence,

QCEL
ω = Qbin

ω ⇐⇒
MCEL

Mchirp
= 27/5

(
3A3

5

)3/5√
3/4
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CELs detection

h̃c(f ) = h0(f )
√

N = h0(f )
√

fTobs,
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10
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ky
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00

 k
yr

CEL
DWD
EMRI

Reduced characteristic amplitude, h̃c, of a CEL, a double WD (DWD) and an EMRI. The CEL has a mass
MCEL = 1.0 M⊙ and compactness C ≈ 2.5 × 10−4 (blue), according to the relativistic
Feynman-Metropolis-Teller EOS. The polytropic index is n = 2.95, and is located at a distance D = 1 kpc.
The observing time has been set to Tobs = 2 yr.. Rodriguez, Rueda, Ruffini, Zuluaga, Iglesias-Blanco and
Loren-Aguilar, JCAP 2023

18 / 27



CEL-binary degeneration

Rodriguez, Rueda, Ruffini, Zuluaga, Iglesias-Blanco and Loren-Aguilar, JCAP 2023
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CEL (n = 2.95) with MCEL = 1.0 M⊙ and
C = 2.5 × 10−4, and an equivalent binary system
with Mbin = 0.24 M⊙. Also comparison of the CEL
signal with that of the detached binary DWD J0651
(Mchirp = 0.31 M⊙).
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Contours of constant chirp mass of the equivalent
binary as a function of the CEL mass and the observed
frequency. In general, the chirp mass of the equivalent
binary depends on the C, MCEL, and on the observed
frequency f . However, once the EOS is selected, the
mass-radius relation is fixed implying that Mchirp
depends only on MCEL and f .
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CEL-binary degeneration

▶ Phase difference during 1 yr,

∆ϕ1y =

∫ ω1yr

ω0

∆Qωd lnω,

where ∆Qω = |QCEL
ω − Qbin

ω |
▶ End for EMRIs: ftd ≈ (Gm2/R3

2)
1/2/(2.43/2π),

▶ End for DWD: frequency when one of the components fills its Roche-lobe.
▶ CEL-binary equivalence parameters, Rodriguez, Rueda, Ruffini, Zuluaga, Iglesias-Blanco

and Loren-Aguilar, JCAP 2023

MCEL C f CEL
end Mchirp m1 m2 f bin

end Type-like f0 ∆ϕ1y
∆h0
h0

∣∣
1y

DCEL
Dbin

SNR
(M⊙) (10−4) (mHz ) (M⊙) (M⊙) (M⊙) (mHz) (mHz)

1.0 2.5 9.20 0.32 1940.62 0.0001 0.053 EMRI 0.05 3.631 × 10−10 5.937 × 10−13 0.778 und.
0.28 0.35 0.30 13.38 PG1101+364 1.0 5.004 × 10−5 2.515 × 10−9 0.773 0.687
0.24 0.45 0.18 7.76 J0106-1003 3.0 5.018 × 10−3 6.455 × 10−8 0.835 9.079

1.4 20.0 148.70 0.48 2916.81 0.0015 0.064 EMRI 0.05 5.521 × 10−10 9.322 × 10−13 0.808 und.
0.45 0.59 0.45 19.92 WD0028-474 1.0 3.868 × 10−5 3.106 × 10−9 0.776 1.511
0.43 0.52 0.47 21.30 WD0135-052 3.0 2.660 × 10−3 6.344 × 10−8 0.766 23.88
0.42 0.51 0.45 20.25 WD1204-450 6.0 4.148 × 10−2 4.377 × 10−7 0.763 119.89
0.41 0.47 0.47 21.48 WD1704-4814 9.0 2.135 × 10−1 1.375 × 10−6 0.764 145.73

4Same chirp mass
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CEL: aftermath of binary white dwarf mergers
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Isodensity curves of a CEL with polytropic index
n = 2.95, MCEL = 1.2 M⊙, and central density
ρc = 1.2 × 108 g cm−3 rotating with angular
velocity Ω/

√
πGρ̄0 = 0.02. All the curves are

self-similar to the ellipsoid with axes ratio
a2/a1 = 0.68 and a3/a1 = 0.77.

Density map of a section in the orbital plane (top
panel) and in the polar plane (bottom panel) of a
0.6 + 0.6 M⊙ DWD merger simulated with 5 × 104

SPH particles. This snapshot is taken 9 orbital periods
after mass transfer begins.
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Rates (Rodriguez, Rueda, Ruffini, Zuluaga, Iglesias-Blanco and Loren-Aguilar,
JCAP 2023)

▶ Globular cluster → star with planetary companion → migration to the center and capture
EMRI rate: 0.02 − 0.5 yr−1

▶ DWD, systems that will merger within Hubble time, rate 0.0064 − 0.512 yr−1

▶ CEL result of binary white mergers (no supernova) 0.0056 − 0.45 yr−1
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BNS merger (Juan Diego’s Talk)

▶ BNS produced by a BdHN II, L. Becerra et al Universe 2023

m j Ω Req I Ω Req I
[M⊙] [s−1] [km] [g cm2] [s−1] [km] [g cm2]

GM1 EOS TM1 EOS
νNS 1.505 0.259 1114.6 14.03 2.04 × 1045 1077.1 14.47 2.11 × 1045

NS 1.404 −0.011 −52.14 14.01 1.85 × 1045 −56.6 14.49 1.93 × 1045

▶ Conservation of baryonic mass

Mb = mb,c + mej + md, Mb = mb,1 + mb,2.

▶ The relation among its baryonic mass, mb,i, gravitational mass, mi, and angular
momentum Ji is,

mb,i

M⊙
≈

mi

M⊙
+

13
200

(
mi

M⊙

)2(
1 −

1
130

j1.7i

)
, i = 1, 2, c,

▶ Conservation of angular momentum

Jmerger = Jc + Jd +∆J,
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Remnant NS, maximal disk mass and no disk (Juan Diego’s Talk)

▶ Conservation of mass-energy

EGW + Eother = ∆Mc2 = [M − (mc + mej + md)]c2, (11)

▶ Limiting case with ∆J = 0, which corresponds to the case with maximum disk mass,
mc = 2.697 M⊙, md = 0.073 M⊙.

Eother = ∆Mc2 = [M − (mc + mej + md)]c2 ≈ (M − mc − md)c2 (12)

≈ 0.139 M⊙c2 ≈ 2.484 × 1053 erg (13)

▶ Limiting case with md = 0 which corresponds to the maximum angular momentum loss.
∆J = 0.331 GM2

⊙/c, and the maximum remnant’s mass, mc = 2.756 M⊙,
Epm

GW ≈ 0.0079 M⊙c2 ≈ 1.404 × 1052 erg.

∆Mc2 = [M − (mc + mej)]c2 ≈ (M − mc)c2 (14)

≈ 0.153 M⊙c2 ≈ 2.734 × 1053 erg (15)
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Unipolar model WD-WD (Caravalho et Apj 940, 2022)

▶ Homopolar model
▶ Beyond pure gravitational quadrupole emission

ω̇0

ω0
= −

Ṗ
P

=
1

g(ω0)

[
ĖGW −

L
1 − α

]
, (16)

α̇

α
= −

1
g(ω0)

{
ĖGW −

L
1 − α

[
1 +

g(ω0)

αI1ω
2
0

]}
, (17)

L
1 − α

= 7.72 × 1032
(

B̃
106 G

)2 ( R1

109 cm

)6

×(
R2

109 cm

)2 (M⊙

M

)4/3 ( 100 s
P

)14/3

erg s−1, (18)
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Constraints SDSS J0651+2844 Caravalho et Apj 940, 2022
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Figure 2: Constraints for SDSS J0651+2844.
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Thank you
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