Semi-analytical approaches to gravitational radiation from astrophysical sources

José Fernando Rodríguez Ruiz

Universidad Industrial de Santander UIS, Bucaramanga, Colombia

• Geometrized units and Boyer-Linquist coordinates (t, r, θ, ϕ) .

• Effective potential, $m \equiv$ TP mass, $M \equiv$ BH mass, a = S/M,

$$V_{\rm eff} = 1 - \frac{2M}{r} + \frac{[L^2/m^2 - a^2(E^2/m^2 - 1)]}{r^2} - \frac{2M(L/m - aE/m)^2}{r^3}$$

$$E_{\rm circ}/m = (r^2 - 2Mr + aM^{1/2}r^{1/2})/[r(r^2 - 3Mr + 2aM^{1/2}r^{1/2})]^{1/2}$$

- Test particle falls due to GW radiation: sequence of circular orbits.

¹Rodriguez, Rueda & Ruffini, Astronomy Reports, 62, 940

• Geometrized units and Boyer-Linquist coordinates (t, r, θ, ϕ) .

• Effective potential, $m \equiv$ TP mass, $M \equiv$ BH mass, a = S/M,

$$V_{\rm eff} = 1 - \frac{2M}{r} + \frac{[L^2/m^2 - a^2(E^2/m^2 - 1)]}{r^2} - \frac{2M(L/m - aE/m)^2}{r^3}$$

$$E_{\rm circ}/m = (r^2 - 2Mr + aM^{1/2}r^{1/2})/[r(r^2 - 3Mr + 2aM^{1/2}r^{1/2})]^{1/2}$$

- Test particle falls due to GW radiation: sequence of circular orbits.

¹Rodriguez, Rueda & Ruffini, Astronomy Reports, 62, 940

• Geometrized units and Boyer-Linquist coordinates (t, r, θ, ϕ) .

• Effective potential, $m \equiv$ TP mass, $M \equiv$ BH mass, a = S/M,

$$V_{\rm eff} = 1 - \frac{2M}{r} + \frac{[L^2/m^2 - a^2(E^2/m^2 - 1)]}{r^2} - \frac{2M(L/m - aE/m)^2}{r^3}$$

$$E_{\rm circ}/m = (r^2 - 2Mr + aM^{1/2}r^{1/2})/[r(r^2 - 3Mr + 2aM^{1/2}r^{1/2})]^{1/2}$$

- Test particle falls due to GW radiation: sequence of circular orbits.

¹Rodriguez, Rueda & Ruffini, Astronomy Reports, 62, 940

• Geometrized units and Boyer-Linquist coordinates (t, r, θ, ϕ) .

• Effective potential, $m \equiv$ TP mass, $M \equiv$ BH mass, a = S/M,

$$V_{\rm eff} = 1 - \frac{2M}{r} + \frac{[L^2/m^2 - a^2(E^2/m^2 - 1)]}{r^2} - \frac{2M(L/m - aE/m)^2}{r^3}$$

$$E_{\rm circ}/m = (r^2 - 2Mr + aM^{1/2}r^{1/2})/[r(r^2 - 3Mr + 2aM^{1/2}r^{1/2})]^{1/2}$$

- Test particle falls due to GW radiation: sequence of circular orbits.

¹Rodriguez, Rueda & Ruffini, Astronomy Reports, 62, 940

• Geometrized units and Boyer-Linquist coordinates (t, r, θ, ϕ) .

• Effective potential, $m \equiv$ TP mass, $M \equiv$ BH mass, a = S/M,

$$V_{\rm eff} = 1 - \frac{2M}{r} + \frac{[L^2/m^2 - a^2(E^2/m^2 - 1)]}{r^2} - \frac{2M(L/m - aE/m)^2}{r^3}$$

$$E_{\rm circ}/m = (r^2 - 2Mr + aM^{1/2}r^{1/2})/[r(r^2 - 3Mr + 2aM^{1/2}r^{1/2})]^{1/2}$$

- Test particle falls due to GW radiation: sequence of circular orbits.

¹Rodriguez, Rueda & Ruffini, Astronomy Reports, 62, 940

• Geometrized units and Boyer-Linquist coordinates (t, r, θ, ϕ) .

• Effective potential, $m \equiv$ TP mass, $M \equiv$ BH mass, a = S/M,

$$V_{\rm eff} = 1 - \frac{2M}{r} + \frac{[L^2/m^2 - a^2(E^2/m^2 - 1)]}{r^2} - \frac{2M(L/m - aE/m)^2}{r^3}$$

$$E_{\rm circ}/m = (r^2 - 2Mr + aM^{1/2}r^{1/2})/[r(r^2 - 3Mr + 2aM^{1/2}r^{1/2})]^{1/2}$$

- Test particle falls due to GW radiation: sequence of circular orbits.

¹Rodriguez, Rueda & Ruffini, Astronomy Reports, 62, 940

Hamiltonian approach and helicoidal drifting sequence (HDS)²

The Hamiltonian of the test particle of mass m in the field of the Kerr black hole of mass M is given by

$$H = -p_t = -N^i p_i + N \sqrt{m^2 + \gamma^{ij} p_i p_j},\tag{1}$$

where $N = 1/\sqrt{-g^{00}}$, $N^{i} = -g^{ti}/g^{tt}$, $\gamma^{ij} = g^{ij} - g^{ti}g^{ij}/g^{tt}$.

Dynamical equations are:

$$\dot{r} = \frac{\partial H}{\partial p_r} \qquad \Omega \equiv \dot{\phi} = \frac{\partial H}{\partial L}, \qquad (2)$$
$$\dot{p_r} = -\frac{\partial H}{\partial r} + \mathcal{F}_r^{\rm nc} \qquad \dot{p}_{\phi} = -\mathcal{F}_{\phi}^{\rm nc} \qquad (3)$$

where $\mathcal{F}_r^{\rm nc}$ and $\mathcal{F}_\phi^{\rm nc}$ are the radial and azimuthal non-conservative radiation-reaction forces.

²Rodriguez, Rueda & Ruffini, Astronomy Reports, 62, 940

Hamiltonian approach and helicoidal drifting sequence (HDS)²

The Hamiltonian of the test particle of mass m in the field of the Kerr black hole of mass M is given by

$$H = -p_t = -N^i p_i + N \sqrt{m^2 + \gamma^{ij} p_i p_j},\tag{1}$$

where $N = 1/\sqrt{-g^{00}}$, $N^{i} = -g^{ti}/g^{tt}$, $\gamma^{ij} = g^{ij} - g^{ti}g^{tj}/g^{tt}$.

Dynamical equations are: Circular orbits

$$\dot{r} = \frac{\partial H}{\partial p_r} = 0$$
 $\Omega \equiv \dot{\phi} = \frac{\partial H}{\partial L},$ (2)

$$\dot{p_r} = -\frac{\partial H}{\partial r} = 0 \qquad \qquad \dot{p}_{\phi} = 0 \tag{3}$$

where $\mathcal{F}_r^{\rm nc}$ and $\mathcal{F}_\phi^{\rm nc}$ are the radial and azimuthal non-conservative radiation-reaction forces.

Particle falls due to the loss of energy and angular momentum, and explicit contribution of the conservative radial force.

²Rodriguez, Rueda & Ruffini, Astronomy Reports, 62, 940

Hamiltonian approach and helicoidal drifting sequence (HDS)²

The Hamiltonian of the test particle of mass m in the field of the Kerr black hole of mass M is given by

$$H = -p_t = -N^i p_i + N \sqrt{m^2 + \gamma^{ij} p_i p_j}, \qquad (1)$$

where $N = 1/\sqrt{-g^{00}}$, $N^{i} = -g^{ti}/g^{tt}$, $\gamma^{ij} = g^{ij} - g^{ti}g^{tj}/g^{tt}$.

Dynamical equations are:

$$\dot{r} = \frac{\partial H}{\partial p_r}$$
 $\Omega \equiv \dot{\phi} = \frac{\partial H}{\partial L},$ (2)

$$\dot{p_r} = -\frac{\partial H}{\partial r} + \mathcal{F}_r^{\rm nc} \qquad \dot{p}_{\phi} = -\mathcal{F}_{\phi}^{\rm nc} \tag{3}$$

where $\mathcal{F}_r^{\rm nc}$ and $\mathcal{F}_\phi^{\rm nc}$ are the radial and azimuthal non-conservative radiation-reaction forces.

- Particle falls due to the loss of energy and angular momentum, and explicit contribution of the conservative radial force.
- Adiabatic parameter $\eta \equiv \dot{\Omega}/\Omega^2 \approx \dot{r}/(r\Omega) \ll 1$.
- All dynamical variables are finite at LCO

²Rodriguez, Rueda & Ruffini, Astronomy Reports, 62, 940

How to calculate \dot{E}_{GW} and \dot{L}_{GW} ? GWR from circular Orbits on Kerr Spacetime

Test particle in a stable circular orbit at r and co-rotating with the BH

$$\Omega_{\rm corot} = \frac{M^{1/2}}{(r^{3/2} + aM^{1/2})} \tag{4}$$

► The energy and angular momentum fluxes to ∞ are given in terms of Z^H_{lmω}, which are obtained from BH perturbation theory [Teukolsky, ApJ, 185, 635 (1973)], namely by solving the Sasaki-Nakamura Eq. [Sasaki & Nakamura, Phys. Lett. A, 86, 68 (1982)]:

$$\frac{dE}{dt} = \sum_{l,m}^{\infty} \frac{|\tilde{Z}_{lm\omega}^{H}|^{2}}{4\pi\omega_{m}^{2}},$$

$$\frac{dL}{dt} = \sum_{l,m}^{\infty} \frac{m|\tilde{Z}_{lm\omega}^{H}|^{2}}{4\pi\omega_{m}^{3}},$$
(5)

- The GW angular frequency for each multipole $\omega_m = m\Omega$
- NO RADIATION FROM CIRCULAR ORBITS INSIDE THE LCO.

Energy Flux

Energy fluxes to infinite test particle in a circular orbit. Rodriguez, Rueda & Ruffini, Astronomy Reports, 62, 940

► For quasi-circular, adiabatic motion we have:

$$\mathcal{F}_r^{\rm nc} = 0,\tag{7}$$

$$\mathcal{F}_{\phi}^{\rm nc} = -\frac{1}{\Omega} \frac{dE}{dt}.$$
(8)

Test particle dynamics in HDS approach

Test particle trajectories $\nu = mM/(m+M)^2 = 0.01$, for different a/M:

The dynamics includes the contribution of the radial momentum which is not negligible near the LCO.

 \blacktriangleright t_{plunge} is defined as the time when the particle crosses the LCO in the HDS.

Left: ratio $-p_r/(p_{\phi}/m) = p_r/j$ for a/M = 0.9. Right: Adiabatic parameter. Rodriguez, Rueda, & Ruffini, Astronomy Reports, 62, 940 (2018)

Transition to plunge: comparison with other approaches

► Taylor expansion of V_{eff} around the LCO³:

$$\ddot{r} = \partial_r^3 F|_{\rm LCO} (r - r_{\rm LCO})^2 / 4 + \partial_{rE} F|_{\rm LCO} (E - E_{\rm LCO}^{\rm circ}) / 2 + \partial_{rL} F|_{\rm LCO} (L - L_{\rm LCO}^{\rm circ}) / 2,$$

where, $F := r^4 \frac{V_{\text{eff}}}{V_t^2}$, $V_t = \frac{aL}{m} + \frac{r^2 + a^2}{m(r^2 - 2Mr + a^2)} [E(r^2 + a^2) - La]$

Energy and angular momentum losses evaluated at LCO $(r_{adiab}(t_0) = r_{LCO}, t_0 \neq t_{plunge})$

$$(E - E_{\text{LCO}}^{\text{circ}}) = (t - t_0)\dot{E}_{\text{GW}}|_{\text{LCO}}, \ (L - L_{\text{LCO}}^{\text{circ}}) = (t - t_0)\Omega^{-1}\dot{E}_{\text{GW}}|_{\text{LCO}}$$

Comparison a/M = 0.9. See Rodriguez, J. F., Rueda, J. A, and Ruffini, R, Astr. Rep., 2018, 62, 940

• GW radiation at the same rate as the LCO, long after the test particle has passed it.

³Ori & Thorne, Phys. Rev. D, 62, 124022 (2000); Sundararajan, Phys. Rev. D, 77, 124050 (2008)

Comparison with other works

The energy "deficits" at the end:

Our work: Rodriguez, J. F., Rueda, J. A, and Ruffini, R, Astronomy Reports, 2018, Vol. 62, No. 12, pp. 940–952. Comparison with Ori & Thorne (2000) (left) and NR from SXS catalog https://www.black-holes.org/ (right)

In the HDS there is less radiated energy (angular momentum) than in the results of Ori & Thorne (2000).

▶ Motivation: work of Aninos et al. (1995) (among other works), also as a "working hypothesis" → Newtonian center-of-mass point of view

▶ Motivation: work of Aninos et al. (1995) (among other works), also as a "working hypothesis" → Newtonian center-of-mass point of view

Principles of "test particle waveform" formalism

- 1. Test particle orbits on Kerr spacetime: HDS approach
- 2. GW emission back-reaction given by circular orbits up to LCO
- 3. Plunge geodesic

▶ Motivation: work of Aninos et al. (1995) (among other works), also as a "working hypothesis" → Newtonian center-of-mass point of view

Principles of "test particle waveform" formalism

- 1. Test particle orbits on Kerr spacetime: HDS approach
- 2. GW emission back-reaction given by circular orbits up to LCO
- 3. Plunge geodesic
- 4. From test particle to comparable masses $m_1/m_2 \approx 1$: $m_{\text{test}} \mapsto \mu$, $M \mapsto m_{\text{tot}} = m_1 + m_2$

Motivation: work of Aninos et al. (1995) (among other works), also as a "working hypothesis" → Newtonian center-of-mass point of view

Principles of "test particle waveform" formalism

- 1. Test particle orbits on Kerr spacetime: HDS approach
- 2. GW emission back-reaction given by circular orbits up to LCO
- 3. Plunge geodesic
- 4. From test particle to comparable masses $m_1/m_2 \approx 1$: $m_{\text{test}} \mapsto \mu$, $M \mapsto m_{\text{tot}} = m_1 + m_2$

"Test particle" waveform construction

1. The gravitational waveform can be constructed from "circularized waves":

$$\frac{1}{2}(h_{+} - ih_{\times}) = -\frac{1}{R} \sum_{l,m} \frac{Z_{lm\omega}^{H}}{\omega_{m}^{2}} {}_{-2}S_{lm}(\Theta)e^{im\Phi}e^{-i\omega_{m}(t-R^{*})},$$
(10)

where *R* is the distance to the observer, Θ is the angle between the axis of rotation and the observer, Φ is the azimuthal coordinate of the orbiting body at t = 0; R^* is the Kerr "tortoise".

2. The complex number $Z_{lm\omega}$ evolves with time, inducing a variable wave amplitude and phase shift.

 $(r(t), \phi(t))$ "test particle" trajectory coordinates

$$\omega_m(t-R^*)\mapsto m\phi(t-R^*).$$

"Test particle" and NR waveforms

Intrinsic phase-time parameter $Q_\omega=\omega^2/\dot{\omega}$

Working hypothesis

HDS + Newtonian center-of-mass

Numerical-relativity waveform BBH: 0230, $m_1 = m_2$ and initial spins $a_1/m_1 = a_2/m_2 = 0.8$, final Kerr BH spin $a_f/M_f = 0.907516$. Intrinsic time-domain phase difference evolution $\Delta Q_\omega = |Q_\omega^{\text{TP}} - Q_\omega^{\text{NR}}|$

Comparison with NR

- ▶ BBH numerical relativity simulations with equal masses components, $m_1/m_2 = q$. Initial components can have equally aligned spins $a_1/m_1 = a_2/m_2$. We studied the special case without spin (two Schwarzschild BHs).
- Fitting factor F,

$$F \equiv (h_1|h_2)/\sqrt{(h_1|h_1)(h_2|h_2)}, \quad (h_1|h_2) \equiv 4\mathfrak{Re}\left[\int_0^\infty h_1(f)\tilde{h}_2(f)/S_n(f)df\right],$$

Simulation	a_i/m_i	a_f/M_f	$a_{\rm eff}/M_f$	F
BBH:0001	1.209309×10^{-7}	0.686461	0.36	0.96
BBH:0157	0.949586	0.940851	0.99	0.93
BBH:0228	0.600000	0.857813	0.80	0.972
BBH:0230	0.800000	0.907516	0.9075	0.993

Rodriguez, J. F., Rueda, J. A. and Ruffini, R, JCAP, 2018, 030

Spin-less merging components

b BBH simulations with spin-less initial components and different mass ratios q < 1

SXS spinless BBH simulations https://www.black-holes.org/, BBH:0169, q = 1/2, $a_{\rm eff} = 0.33$; BBH:0169, q = 1/3, $a_{\rm eff} = 0.329$; BBH:0169, q = 1/4, $a_{\rm eff} = 0.25$. Rodriguez, J. F., Rueda, J. A. and Ruffini, R, JCAP, 2018, 030

"FRAME DRAGGING" DUE TO THE ORBITAL ANGULAR MOMENTUM

Incompressible ellipsoidal figures of equilibrium

- Classical work of Chandrashekar, *Ellipsoidal Figures of Equilibrium* (1969)
- Evolution of incompressible self-gravitating object driven by GW reaction => conserved quantity: circulation along the equator. Bonnie, D. Miller, The Astrophysical Journal, 187, 606, (1974).
- Evolution along Riemann S-type (self-gravitating object supported by rotation and internal motions) sequence with constant circulation C,

$$C = \pi a_1 a_2 \big(\zeta + 2\Omega \big),$$

where Ω spin and ζ vorticity, and they are parallel.

A compressible ellipsoid characterized by the polytropic index n, $\lambda_2 := a_2/a_1$, $\lambda_3 := a_3/a_1$, Ω and vorticity ζ

Compressible models: polytropic EOS

- Generalization to objects whose internal matter is described by a polytropic EOS [Lai, Rasio & Shapiro, ApJ S, 88, 205 (1993)].
- ► Time unit $\tau_{CEL} = (\pi G \bar{\rho}_0)^{-1/2}$, where $\bar{\rho}_0 = M/(4/3\pi R_0^3)$, $R_0 :=$ radius of the non-rotating polytrope (same *n*) with the same mass.
- Evolution a la Landau-Lifshitz

Quasi-static evolution of a CEL with n = 1 and different circulations $C/\pi = 1.95, 2.39, 2.92$

Polytropic index $n \rightarrow 3$: chirping ellipsoid (CEL)

- New phenomena: Early period increasing GW frequency and amplitude
- typical frequency is $\sim 1 \text{ mHz}$. Space-based interferometers: LISA, TianQin.

GW strain and timescale of a CEL with n = 2.95, $M = 1.0 M_{\odot}$ which is the same of the non-rotating spherical star with radius $R \approx 6000$ km. The value of the circulation for the continuous, dashed and dotted line are $\mathscr{C} = (\kappa_n MC/5\pi)/(GM^3R_0)^{1/2} = (0.20, 0.23, 0.25)$, respectively. Rodriguez, Rueda, Ruffini, Zuluaga, Iglesias-Blanco and Loren-Aguilar, JCAP 2023.

Intrinsic GW phase-time evolution of CELs

- CELs are quasi-monochromatic
- Intrinsic phase-time parameter $Q_{\omega} \equiv \frac{d^2}{\omega} = \frac{d\phi}{d\ln\omega} = 2\pi \frac{dN}{d\ln f}$

Figure 1: Intrinsic phase-time of CELs with n = 2.8, 2.9, 2.95. Rodriguez, Rueda, Ruffini, Zuluaga, Iglesias-Blanco and Loren-Aguilar, **JCAP 2023**.

Intrinsic phase empirical fits,

$$Q_{\omega}^{\text{CEL}} \approx \frac{\mathcal{A}_n}{\mathcal{C}^{5/2}} \left[\frac{\omega}{\sqrt{\pi G \bar{\rho}_0}} \right]^{\alpha} \quad \mathcal{C} = GM_{\text{CEL}} / (c^2 R_0)$$

Intrinsic phase-time evolution of Newtonian binaries

$$Q_{\omega}^{\rm bin} = \frac{5}{3} 2^{-7/3} (\omega M_{\rm chirp})^{-5/3}$$

CELs parameters

Polytropic structure constants (n, κ_n, k₁, k₂, k₃) and the Q_ω power-law empirical fitting parameters.

n	κ_n	k_1	k_2	<i>k</i> ₃	\mathcal{A}_n	α
1.0	0.65345	0.5	0.81289	2.2472	2.68	-1.081
2.0	0.38712	1.1078	0.71618	1.6562	4.003	-1.222
2.5	0.27951	1.4295	0.67623	1.4202	4.060	-1.447
2.7	0.24109	1.55971	0.66110	1.33194	5.926	-1.365
2.9	0.20530	1.69038	0.64630	1.24621	4.940	-1.571
2.95	0.19676	1.72309	0.64265	1.22511	4.369	-1.614
2.97	0.19340	1.73617	0.64119	1.21669	3.760	-1.640
2.99	0.19005	1.74925	0.63973	1.20829	3.817	-1.652

In the limit $n \to 3$, $\alpha \to -5/3$: CEL-binary equivalence,

$$Q_{\omega}^{\text{CEL}} = Q_{\omega}^{\text{bin}} \iff \frac{M_{\text{CEL}}}{M_{\text{chirp}}} = 2^{7/5} \left(\frac{3A_3}{5}\right)^{3/5} \sqrt{3/4}$$

CELs detection

Reduced characteristic amplitude, \tilde{h}_c , of a CEL, a double WD (DWD) and an EMRI. The CEL has a mass $M_{\text{CEL}} = 1.0 M_{\odot}$ and compactness $C \approx 2.5 \times 10^{-4}$ (blue), according to the relativistic Feynman-Metropolis-Teller EOS. The polytropic index is n = 2.95, and is located at a distance D = 1 kpc. The observing time has been set to $T_{\text{obs}} = 2$ yr.. Rodriguez, Rueda, Ruffini, Zuluaga, Iglesias-Blanco and Loren-Aguilar, JCAP 2023

CEL-binary degeneration

Rodriguez, Rueda, Ruffini, Zuluaga, Iglesias-Blanco and Loren-Aguilar, JCAP 2023

CEL (n = 2.95) with $M_{CEL} = 1.0 M_{\odot}$ and $C = 2.5 \times 10^{-4}$, and an equivalent binary system with $M_{\text{bin}} = 0.24 M_{\odot}$. Also comparison of the CEL signal with that of the detached binary DWD J0651 $(M_{\text{chirp}} = 0.31 M_{\odot})$.

Contours of constant chirp mass of the equivalent binary as a function of the CEL mass and the observed frequency. In general, the chirp mass of the equivalent binary depends on the C, M_{CEL} , and on the observed frequency f. However, once the EOS is selected, the mass-radius relation is fixed implying that M_{chirp} depends only on M_{CEL} and f.

CEL-binary degeneration

Phase difference during 1 yr,

$$\Delta \phi_{1y} = \int_{\omega_0}^{\omega_{1yr}} \Delta Q_\omega d \ln \omega,$$

where $\Delta Q_{\omega} = |Q_{\omega}^{\text{CEL}} - Q_{\omega}^{\text{bin}}|$

- End for EMRIs: $f_{\rm td} \approx (Gm_2/R_2^3)^{1/2}/(2.4^{3/2}\pi)$,
- End for DWD: frequency when one of the components fills its Roche-lobe.
- CEL-binary equivalence parameters, Rodriguez, Rueda, Ruffini, Zuluaga, Iglesias-Blanco and Loren-Aguilar, JCAP 2023

(M_{\odot})	C (10 ⁻⁴)	fend (mHz)	(M_{\odot})	$\binom{m_1}{(M_{\odot})}$	$(M_{\odot})^{m_2}$	f ^{bin} (mHz)	Type-like	f ₀ (mHz)	$\Delta \phi_{1y}$	$\frac{\Delta h_0}{h_0} _{1y}$	$\frac{D_{\text{CEL}}}{D_{\text{bin}}}$	SNR
1.0	2.5	9.20	0.32	1940.62	0.0001	0.053	EMRI	0.05	3.631×10^{-10}	5.937×10^{-13}	0.778	und.
			0.28	0.35	0.30	13.38	PG1101+364	1.0	5.004×10^{-5}	2.515×10^{-9}	0.773	0.687
			0.24	0.45	0.18	7.76	J0106-1003	3.0	5.018×10^{-3}	6.455×10^{-8}	0.835	9.079
1.4	20.0	148.70	0.48	2916.81	0.0015	0.064	EMRI	0.05	5.521×10^{-10}	9.322×10^{-13}	0.808	und.
			0.45	0.59	0.45	19.92	WD0028-474	1.0	3.868×10^{-5}	3.106×10^{-9}	0.776	1.511
			0.43	0.52	0.47	21.30	WD0135-052	3.0	2.660×10^{-3}	6.344×10^{-8}	0.766	23.88
			0.42	0.51	0.45	20.25	WD1204-450	6.0	4.148×10^{-2}	4.377×10^{-7}	0.763	119.89
			0.41	0.47	0.47	21.48	WD1704-4814	9.0	2.135×10^{-1}	1.375×10^{-6}	0.764	145.73

CEL: aftermath of binary white dwarf mergers

Isodensity curves of a CEL with polytropic index n = 2.95, $M_{CEL} = 1.2 M_{\odot}$, and central density $\rho_c = 1.2 \times 10^8 \text{ g cm}^{-3}$ rotating with angular velocity $\Omega / \sqrt{\pi G \rho_0} = 0.02$. All the curves are *self-similar* to the ellipsoid with axes ratio $a2/a_1 = 0.68$ and $a_3/a_1 = 0.77$.

Density map of a section in the orbital plane (top panel) and in the polar plane (bottom panel) of a $0.6 + 0.6 M_{\odot}$ DWD merger simulated with 5×10^4 SPH particles. This snapshot is taken 9 orbital periods after mass transfer begins.

- ► Globular cluster \rightarrow star with planetary companion \rightarrow migration to the center and capture EMRI rate: 0.02 0.5 yr⁻¹
- **b** DWD, systems that will merger within Hubble time, rate $0.0064 0.512 \text{ yr}^{-1}$
- ► CEL result of binary white mergers (no supernova) 0.0056 0.45 yr⁻¹

BNS merger (Juan Diego's Talk)

BNS produced by a BdHN II, L. Becerra et al Universe 2023

	m	j	Ω	R _{eq}	Ι	Ω	R _{eq}	Ι	
	$[M_{\odot}]$		$[s^{-1}]$	[km]	[g cm ²]	$[s^{-1}]$	[km]	[g cm ²]	
				GM1 E	OS	TM1 EOS			
νNS	1.505	0.259	1114.6	14.03	2.04×10^{45}	1077.1	14.47	2.11×10^{45}	
NS	1.404	-0.011	-52.14	14.01	1.85×10^{45}	-56.6	14.49	1.93×10^{45}	

Conservation of baryonic mass

$$M_b = m_{b,c} + m_{ei} + m_d, \quad M_b = m_{b,1} + m_{b,2}.$$

The relation among its baryonic mass, $m_{b,i}$, gravitational mass, m_i , and angular momentum J_i is,

$$\frac{m_{b,i}}{M_{\odot}} \approx \frac{m_i}{M_{\odot}} + \frac{13}{200} \left(\frac{m_i}{M_{\odot}}\right)^2 \left(1 - \frac{1}{130} j_i^{1.7}\right), \quad i = 1, 2, c,$$

Conservation of angular momentum

$$J_{\text{merger}} = J_c + J_d + \Delta J_s$$

Remnant NS, maximal disk mass and no disk (Juan Diego's Talk)

Conservation of mass-energy

$$E_{\rm GW} + E_{\rm other} = \Delta M c^2 = [M - (m_c + m_{\rm ej} + m_d)]c^2,$$
 (11)

Limiting case with $\Delta J = 0$, which corresponds to the case with maximum disk mass, $m_c = 2.697 M_{\odot}, m_d = 0.073 M_{\odot}.$

$$E_{\text{other}} = \Delta M c^2 = [M - (m_c + m_{\text{ej}} + m_d)]c^2 \approx (M - m_c - m_d)c^2$$
(12)

$$\approx 0.139 \, M_{\odot} c^2 \approx 2.484 \times 10^{53} \, \text{erg}$$
 (13)

► Limiting case with $m_d = 0$ which corresponds to the maximum angular momentum loss. $\Delta J = 0.331 \ GM_{\odot}^2/c$, and the maximum remnant's mass, $m_c = 2.756 \ M_{\odot}$, $E_{\text{GW}}^{\text{pm}} \approx 0.0079 \ M_{\odot}c^2 \approx 1.404 \times 10^{52} \text{ erg.}$

$$\Delta M c^{2} = [M - (m_{c} + m_{ej})]c^{2} \approx (M - m_{c})c^{2}$$
(14)

$$\approx 0.153 \, M_{\odot} c^2 \approx 2.734 \times 10^{53} \, \text{erg}$$
 (15)

Unipolar model WD-WD (Caravalho et Apj 940, 2022)

Homopolar model

Beyond pure gravitational quadrupole emission

$$\frac{\dot{\omega}_0}{\omega_0} = -\frac{\dot{P}}{P} = \frac{1}{g(\omega_0)} \left[\dot{E}_{\rm GW} - \frac{L}{1-\alpha} \right],\tag{16}$$

$$\frac{\dot{\alpha}}{\alpha} = -\frac{1}{g(\omega_0)} \left\{ \dot{E}_{\rm GW} - \frac{L}{1-\alpha} \left[1 + \frac{g(\omega_0)}{\alpha I_1 \omega_0^2} \right] \right\},\tag{17}$$

$$\frac{L}{1-\alpha} = 7.72 \times 10^{32} \left(\frac{\tilde{B}}{10^6 \,\mathrm{G}}\right)^2 \left(\frac{R_1}{10^9 \,\mathrm{cm}}\right)^6 \times \left(\frac{R_2}{10^9 \,\mathrm{cm}}\right)^2 \left(\frac{M_\odot}{M}\right)^{4/3} \left(\frac{100 \,\mathrm{s}}{P}\right)^{14/3} \mathrm{erg \, s}^{-1}, \quad (18)$$

Constraints SDSS J0651+2844 Caravalho et Apj 940, 2022

Figure 2: Constraints for SDSS J0651+2844.

Thank you

