Occurrence of gravitational collapse of neutron star into a black hole in BdHNe leading to GRBs

Laura Marcela Becerra B.

Centro Multidiciplinario de Física, Universidad Mayor, Chile

ICRANet Collaboration (International Center for Relativistic Astrophysics Network)

Thrid Julio Garavito International Meeting, 2024

Bogotá, Colombia

November 13, 2024

Gamma Ray Burst (GRBs)

The most energetic events

Binary Driven HyperNova Model (BdHNe)

Ruffini, et. al, ApJ 2001, Rueda & Ruffini, ApJ 2012, Ruffini et al, ApJ 2016

- GRB-SNe Ic connection (The SNe show similar properties independent of the GRB).
- GRB-SN events are related to massive star explosions, and most massive stars belong to binaries
- The models of SNe Ic show they are more plausibly explained via binary interactions to aid the pre-SN hydrogen and helium layers ejection.
- Direct formation of a BH may occur only in the evolved cores of zero-age main-sequence (ZAMS) stars above 25M_☉, and without an SN.

Binary Driven HyperNova Model (BdHNe)

Ruffini, et. al, ApJ 2001, Rueda & Ruffini, ApJ 2012, Ruffini et al, ApJ 2016

 $SPH \ BdHNe$

Binary Driven HyperNova Model (BdHNe) Ruffini, et. al, ApJ 2001, Rueda & Ruffini, ApJ 2012, Ruffini et al, ApJ 2016

Schematic Initial Conditions

L. Becerra, et. al., ApJ 2015, 2016

Smooth particle hydrodynamic (SPH) of the IGC scenario

L. Becerra, C. Ellinger, C. Fryer, R. Rueda and R. Ruffini, ApJ 871, 2019

Smooth particle hydrodynamic (SPH) of the IGC scenario

L. Becerra, C. Ellinger, C. Fryer, R. Rueda and R. Ruffini, ApJ 871, 2019

Smooth particle hydrodynamic (SPH) of the IGC scenario

L. Becerra, C. Ellinger, C. Fryer, R. Rueda and R. Ruffini, ApJ 871, 2019

Mass Accretion Rate on the νNS and the NS companion

SN Energy and Initial Binary Period (L. Becerra et al, ApJ 871,2019)

Mass Accretion Rate on the νNS and the NS companion

SN Energy and Initial Binary Period (L. Becerra et al, ApJ 871,2019)

Mass Accretion Rate on the νNS and the NS companion

SN Energy and Initial Binary Period (L. Becerra et al, ApJ 871,2019)

The gravitational energy gain is mostly taken away by the emission of MeVneutrinos

Rotating NS configurations - RNS Code (L. Becerra et al., ApJ 871, 2018, L. Becerra et al., arXiv:2409.05767)

The evolution of the NS gravitational mass and angular momentum is:

$$\begin{split} \frac{dJ_{\rm NS}}{dt} &= \chi \, l(R_{\rm in}) \frac{dM_{\rm b}}{dt} + \tau_{\rm mag} \\ l(R_{\rm in} &= \begin{cases} l_{\rm isco}, & {\rm if} \; R_{\rm in} \geq R_{\rm ns} \\ \\ \Omega \; R_{\rm ns}^2, & {\rm if} \; R_{\rm in} < R_{\rm ns} \end{cases} \end{split}$$

L. Becerra

SPH BdHNe

Rotating NS configurations - RNS Code (L. Becerra et al., ApJ 871, 2018, L. Becerra et al., arXiv:2409.05767)

The evolution of the NS gravitational mass and angular momentum is:

$$\begin{split} \frac{dJ_{\rm NS}}{dt} &= \chi \, l(R_{\rm in}) \frac{dM_{\rm b}}{dt} + \tau_{\rm mag} \\ l(R_{\rm in} &= \begin{cases} l_{\rm isco}, & {\rm if} \ R_{\rm in} \geq R_{\rm ns} \\ \\ \Omega \ R_{\rm ns}^2, & {\rm if} \ R_{\rm in} < R_{\rm ns} \end{cases} \end{split}$$

The NSs could have different fates.

Rotating NS configurations - RNS Code (L. Becerra et al., ApJ 871, 2018, L. Becerra et al., arXiv:2409.05767)

L. Becerra

Rotating NS configurations - RNS Code (L. Becerra et al., ApJ 871, 2018, L. Becerra et al., arXiv:2409.05767)

Observables in the GRB data

Y. Wang, et al 2019, R. Morandi et. al. 2021, Rueda, et. al. 2022, L. Becerra et al., 2022

		GRB observable				
Physical phenomenon	BdHN	ν NS-rise	UPE	GeV	SXFs	Afterglow
		(soft-hard	(MeV)	emission	HXFs	(X/optical/
		X-rays)				radio)
Early SN emission	I, II, III	\otimes				
Hypercritical accretion onto νNS	I, II, III	\otimes				
Hypercritical accretion onto NS	I, II	\otimes				
BH formation from NS collapse	Ι			\otimes		
Transparency of e^+e^- (from vacuum	Ι		\otimes			
polarization) with low baryon load region						
Synchrotron radiation inner engine:	Ι			\otimes		
$\rm BH$ + $B\text{-field}\text{+}\rm SN$ ejecta						
Transparency of e^+e^- (from vacuum	Ι				\otimes	
polarization) with high baryon load						
Synchrotron emission from SN ejecta with	I, II, III					\otimes
energy injection from νNS						
Pulsar-like emission from νNS	I, II, III					\otimes

Observables in the GRB data

Y. Wang, et al 2019, R. Morandi et. al. 2021, Rueda, et. al. 2022, L. Becerra et al., 2022

Observables in the GRB data

Y. Wang, et al 2019, R. Morandi et. al. 2021, Rueda, et. al. 2022, L. Becerra et al., 2022

Binary System fate: the long and short GRB connection

Motion of the binary stars (L. Becerra et al, Universe 9 2023, L. Becerra et al, arXiv:2401.15702)

SPH BdHNe

Summary

Summary

- The results of 3D-numerical simulations of the IGC model have opened new lines of research on the interpretation of long GRB data.
- Rotational energy acquired by the νNS and the NS companion, along with accretion power, can result in early emissions preceding the main prompt emission. This suggests the potential for detecting precursors with a double-peak structure in X-ray and/or gamma-ray observations.
- BdHNe events can result in BH-BH, BH-NS, and NS-NS binaries. These systems, driven by GW radiation, will merge and lead to short GRBs. The relative rates of BdHNe I and II offer vital insights into the nuclear EOS of NSs. This data also offers clues about the stellar evolution leading to CO-NS binaries in the BdHN scenario.

Thanks!