

Grupo de **Física y Astrofísica** Computacional

university of groningen

Instituto de Física - Universidad de Antioquia

NIR SPECTRAL SIGNATURES OF THE CIRCUMPLANETARY DISK IN PDS 70 C

SILVIA CAMILA MELO TUTOR: GERMÁN CHAPARRO

Facultad de Ciencias Exactas y Naturales

AGENDA

 \bullet

O

Motivation

Methodology

Results

Conclusions

01 02 03 04

FACom

 $\overline{}$

THE ASTROCHEMISTRY FUNDAMENTS

01

PLANETARY FORMATION

4. Cores condense into young stars surrounded by dusty disks.

1. Giant cloud of gas and dust in interstellar space.

- It is a laboratory of astrochemistry.
- What is the origin of planetary formation?
- What is our origin?

5. Planets form from the disks, and new solar system is

2. Clumps begin to form within the cloud

Mdisk ~ 10-20% M* 99 %Gas + 1% dust

Dense cores of molecular clouds collapse due to their own gravity, forming stars within them.

As the disks rotate, protoplanetary disks form around young stars. Additionally, young stars eject winds that disperse the parent cloud.

 \blacksquare A $\boldsymbol{\cap}$ o \blacksquare

3. Dense cores, precursors to stars, form within clump

Testi et. al (2014)

Testi +2014

PDS 70

ALMA ~ 855 μm - Band 7 T Tauri Star (near-IR) Distance: 370 light-years from Earth Age: ~5 Myr PDS 70 c has 5 Mjup

 $\left(\left. \left. \right. \right. \right)$

When creating a model to attempt to reproduce the observed emission, it is possible to understand its density, temperature, and energy flux in order to determine its chemical components.

Hashimoto et al. (2020) Wang et al. (2020) Isella et. al (2019)

METHODOLOGY

Q

FACom

PRODIMO (PROTOPLANETARY DISK MODEL)

A chemical-radiative code called ProDiMo is used to model protoplanetary disks (PPDs).

PRODIMO (PROTOPLANETARY DISK MODEL)

A chemical-radiative code called ProDiMo is used to model protoplanetary disks (PPDs).

07 SPECTRAL ENERGY DISTRIBUTION (SED) FOR PDS 70⁼

 \blacksquare A $\boldsymbol{\cap}$ o \blacksquare

 \rightarrow

(Woitke et al. 2009, 2016; Kamp et al. 2010, 2017; Thi et al. 2011, 2020) With Iν: Spectral intensity, Sν: Source function (radiation contributed by the disk), Bν: Planck function (blackbody approximation), Jν: Radiation field, and κν,abs, κν,sca, κν,ext {cm}^{-1} as the absorption, scattering, and extinction coefficients of the dust, respectively.

C

08 SPECTRAL ENERGY DISTRIBUTION (SED) FOR PDS 70 $^{\text{F}}$

 \blacksquare A $\boldsymbol{\cap}$ o \blacksquare

 \equiv

UV radiation field and Gas Temperature

PRODIMO (PROTOPLANETARY DISK MODEL) A chemical-radiative code called ProDiMo is used to model circumplanetary disks (CPDs) for

a Brown Darf Model.

RESULTS

K

FACom

 $\overline{\mathbf{C}}$

 \blacksquare A $\boldsymbol{\cap}$ o \blacksquare

For dust density, the gas-to-dust mass ratio is fixed at 1/100. The settling varies radially, depending on the grain size.

1. DISK STRUCTURE OF PDS 70 C

The net gain of thermal kinetic energy:

$$
\frac{de}{dt} = \sum_{k} \Gamma_k(T_{\rm g}, n_{\rm sp}) - \sum_{k} \Lambda_k(T_{\rm g}, n_{\rm sp})
$$

Con Γk y Λk: These are the different heating and cooling rates [erg cm⁻³s⁻¹], and <i>nsp: abundances.

O

12 2. THERMAL BALANCE OF PDS 70 C

We can obtain population levels of molecules, flow lines, emission lines, heating-cooling levels, and population levels of species abundances

⁽Woitke et al. 2009, 2016; Kamp et al. 2010, 2017; Thi et al. 2011, 2020)

Equation of the formation and destruction rate -> Species densities:

$$
\frac{dn_i}{dt} = \sum_{jkl} R_{jk \to il} (T_g) n_j n_k + \sum_{j\ell} \left(R_{j \to il}^{ph} + R_{j \to il}^{cr} \right) n_j
$$

$$
- n_i \left(\sum_{jkl} R_{il \to jk} n_\ell + \sum_{jk} \left(R_{i \to jk}^{ph} + R_{i \to jk}^{cr} \right) \right)
$$

 $\overline{\mathbf{C}}$

 $n_{\rm sp}(r, z)$

(Woitke et al. 2009, 2016; Kamp et al. 2010, 2017; Thi et al. 2011, 2020)

Chemical rates, absorption energies, species masses are required. UMIST, KIDA.

¹³ 3. CHEMICAL BALANCE OF PDS 70 AND PDS 70C⁼

14 SYNTHETIC SPECTRUM OF PDS 70 AND PDS 70C

Synthetic spectral fluxes in mJy, modeled over the range from 0.6 to 28 μm, corresponding to the near-infrared (NIR) and mid-infrared (MIR) regimes for the PDS 70 system (top) and PDS 70c (bottom). The peaks in PDS 70c, they are likely associated with molecular features from species such as H_2O , $CH₄$, and CO. This wavelength range is crucial for comparison with James Webb Space Telescope (JWST) observations, which are highly sensitive in the NIR and MIR, allowing for detailed analysis of the chemical composition and structure of these environments.

 \bullet

 \blacksquare A $\boldsymbol{\cap}$ o \blacksquare

 $\left(\left. \left. \right. \right. \right)$

SYNTHETIC SPECTRUM WITHOUT CONTINUUM

This figure shows the continuum-free spectrum for the PDS 70 c model in the wavelength range of 0.6 to 10 microns. The blue curve represents the flux (in mJy) as a function of wavelength, highlighting various spectral features. The spectrum reveals prominent peaks in the mid-infrared, indicating the presence of specific molecular transitions.

16 SYNTHETIC SPECTRUM WITHOUT CONTINUUM

This figure presents the synthetic spectrum without the continuum for a protoplanetary disk, highlighting the emission lines of various chemical species such as CO, C, OH, ortho-H2O (o-H2O), and para-H2O (p-H2O) within the wavelength range of 0.6 to 10 microns. Each emission line is represented with distinct colors (e.g., CO in red, OH in yellow, etc.), showcasing their individual contributions to the overall spectrum.

 $\left(\left. \left. \right. \right. \left. \left. \right. \right. \left. \left. \right. \right)$

 $\left(\ \right)$

 $\qquad \qquad \bullet$

Conclusions

1.The ProDiMo modeling accurately reproduces the thermal structure, gas density, and spectral energy distribution (SED) of the PDS 70 and PDS 70 c disks. The SED, particularly at 855 μm, shows strong agreement with observational data, offering crucial constraints for the physical and chemical properties of circumplanetary and protoplanetary disks.

3. Future work will focus on using the PSyCo code to model the formation of moons within the PDS 70c circumplanetary disk. This will enable a deeper understanding of the disk's evolution and the formation of secondary bodies, advancing our knowledge of satellite systems.

2.The flow of molecular emission lines in PDS 70c, alongside key compounds like H2O and CO, is essential for understanding the chemical pathways and thermal balance in the disk. These insights are fundamental for studying how circumplanetary environments influence moon formation and the overall composition of these emerging bodies.

THANK YOU!

 \bullet

O

FACom

 \equiv

Anexos

