

SEARCHING FOR EVIDENCE OF ACCRETION TO MASSIVE PROTOSTARS BEYOND THE CLASSICAL FEEDBACK LIMIT

Presented by:

Ana Sofía Marulanda-Duque Estudiante MSc. en Física (Universidad de Antioquia)

> <u>Supervised by:</u> Viviana Rosero (Caltech) Joshua Marvil (NRAO)

In Collaboration with: Kei Tanaka (Tokio Tech) Yichen Zhang (University of Virginia) Germán Chaparro (Universidad de Antioquia)

November, 2024

Grupo de Física y Astrofísica Computacional

Instituto de Física - Universidad de Antioquia

Stellar formation process

T Tauri star

Low mass systems

Next Steps

Conclusions

1

Stellar formation process

 $M \ge 40 \text{ M} \odot$ Acretion Rates > 3X10⁻³ M \odot yr⁻¹ R > 100 R \odot

Low mass systems

Type B and O stars form, we observe them, but how?

Accretion vs Radiative Feedback problem!

DE ANTIOQUIA

NRA

tives on Cosmic Origin

Motivation

Declination

Observing massive sources is difficult!

The Observations

GLIMPSE Spitzer IR in 3.6, 4.5 and 8.0 µm bands (blue, green and red) overlaid with contours of the 6cm radio emission

RGB images IR Spitzer

How do we detect them then?

Started being associated with a **UCHII** region H2O and HO masers

Wilner et al. 1996 Wood & Churchwell 1989

Forster & Caswell 1989

Cygni profile that indicates infall of material

Green contours are HCO+ J= 4-3 Radio continuum at 6 cm mapped using ASTE 1-5 HCO+ J= 1-0 clumps region is highly fragmented and consists of dense pockets of gas

CS = 7-6 transition reveals the presence of warm and dense gas

Improved sensitivity

[Rosero, V et al 2019]

CICO VICO CHALMERS & VIRGINIA Initiatives on Cosmic Origins

Next Steps

Conclusions

[Zhang, Y et al 2019]

VICO CICO CHALMERS & VIRGINIA Initiatives on Cosmic Origins

Ci-talianan

Computacional

Conclusions

ved with	Alma Band6 / VLA BandQ
Mass	50M ⊙
Distance	8.4 kpc
n Region	UHCII

R

UNIVERSIDAD DE ANTIOQUIA

CHALMERS & VIRGINIA

nitiatives on Cosmic Origins

NRAC

Next Steps

Conclusions

ved with	Alma Band6 / VLA BandQ
Mass	50M ⊙
Distance	8.4 kpc
n Region	UHCII
Di	sk confirmed throught kinematics

Photoionised bipolar outflow

Spectral index $\alpha > 0$ Dominant free-free emission Some regions $\alpha < -0.5$ indicate non-thermal emission

Inside the ionized outflow: Non-thermal jet candidate

Computacional

nitiatives on Cosmic Origins

NRAC

Next Steps

Conclusions

ved with	Alma Band6 / VLA BandQ
Mass	50M ⊙
Distance	8.4 kpc
n Region	UHCII
Disk confirmed throught kinematics	

Photoionised bipolar outflow

Spectral index $\alpha > 0$ Dominant free-free emission Some regions $\alpha <$ -0.5 indicate non-thermal emission

Inside the ionized outflow: Non-thermal jet candidate

Conclusions

ved with	Alma Band6 / VLA BandQ
Mass	50M ⊙
Distance	8.4 kpc
n Region	UHCII
Dis	< confirmed throught kinematics
	Photoionised bipolar outflow
α > ons α < -0.5	Spectral index O Dominant free-free emission indicate non-thermal emission
ionized outflow: Non-thermal jet candidate	
ng its presence would make G45 the first bservational evidence of disk accretion	

9

Conclusions

Frequency (GHz)	Central Frequency (GHz)	L (cm)
211 – 275	234	0.13
40 – 50	44	0.7
26.5-40	33	1
18 – 26.5	22.2	1.3
12 - 18	15	2
4 - 8	6.7	6

Conclusions

Frequency (GHz)	Central Frequency (GHz)	L (cm)	
211 – 275	234	0.13	
40 – 50	44	0.7	
26.5-40	33	1	NEW!
18 – 26.5	22.2	1.3	
12 - 18	15	2	
4 – 8	6.7	6	NEW!

Wide Multiband Approach!

Continuum Imaging Process

The Observations

Motivation

High and low resolution approach

Enhance sensitivity without sacrificing resolution

Next Steps

Conclusions

Iterative cleaning

Combine bands

Resolve compact emissions

11

Radio continuum results

C.F 33.2 GHz 0.06" 0.048 mJy beam-1

[-3, 10, 20, 35, 90, 150, 300, 480, 700] × 0.048mJy beam-1

Radio continuum results

C.F 33.2 GHz 0.06" 0.048 mJy beam-1

Radio continuum results

C.F 33.2 GHz 0.06" 0.048 mJy beam-1

[-3, 10, 20, 35, 90, 150, 300, 480, 700] × 0.048mJy beam-1

Spectral Index a

 $S(\nu) \propto \nu^{\alpha}$

We can use this to characterize the compact emissions in the source

$$lpha = rac{\log\left(rac{I_{
u_1}}{I_{
u_2}}
ight)}{\log\left(rac{
u_1}{
u_2}
ight)} \hspace{0.5cm}
u_1 = 15\,\mathrm{GHz}
u_2 = 33.2\,\mathrm{GHz}$$

α Range	Emitting Source
α < 0	Non-thermal sources
0 < α < 1	lonized gas (thermal)
1 < α < 2	Dust (thermal)
α ≈ 2	Very cool thermal sources
α > 2	Very cold sources

Typical Emission Mechanism

Synchrotron radiation, AGN, supernova remnants

Free-free emission (H II regions)

Thermal dust emission

Blackbody radiation (cool stars, cold dust)

Extremely cold dust or molecular clouds

Spectral Index a: flux extraction

imfit task could not resolve the compact sources, unreliable flux outcomes

Manual enclosing of sources based on contour levels

Same regions used on both Ku and KKaQ images

Flux densities extracted from the viewer

Spectral Index a: flux extraction

Next Steps

Conclusions

α < 0	Non-thermal sources
0 < α < 1	Ionized gas (thermal)

)	Size ("×")	$S_{\nu 15 GHz}(mJy)$	$S_{\nu 33.2 GHz}(mJy)$	α
;	0.4 ×0.22	31.40 ±0.06	32.50 ±0.12	0.04 ±0.18
	0.28 ×0.18	32.80 ±0.05	67.80 ±0.10	0.90 ±0.2
)	0.20 ×0.19	3.63 ±0.04	3.13 ±0.08	-0.2 ±0.2
	0.19 ×0.11	2.65 ±0.03	2.32 ± 0.06	-0.17 ±0.18

Flux density uncertainity

$$\sigma_{S_{
u}} = \sigma_{ ext{image}} imes \left(rac{ ext{npts}}{ ext{beam area}}
ight)^{0.5}$$

Added in quadrature with an assumed 10% error in callibration

Spectral Index a: flux extraction

Next Steps

Conclusions

α < 0	Non-thermal sources
0 < α < 1	Ionized gas (thermal)

Size (" \times ")	$S_{\nu 15 GHz}(mJy)$	$S_{\nu 33.2 GHz}(mJy)$	α
0.4 ×0.22	31.40 ±0.06	32.50 ±0.12	0.04 ±0.18
0.28 ×0.18	32.80 ±0.05	67.80 ±0.10	0.90 ±0.2
0.20 ×0.19	3.63 ±0.04	3.13 ± 0.08	-0.2 ±0.2
0.19 ×0.11	2.65 ±0.03	2.32 ± 0.06	-0.17 ±0.18

Conclusions

CHALMERS & VIRGINIA

itiatives on Cosmic Origin

NRAC

Computacional

Spectral Index a: mapping

UNIVERSIDAD

DE ANTIOQUIA

Next Steps

Conclusions

Conclusions

Discussion	Results	The Observations	Motivation
Photoi			
		e scenarios	POSSIDI
Dense Material			

CICO VICO CHALMERS & VIRGINIA Initiatives on Cosmic Origins

Next Steps

Conclusions

onized Dust Clumps

I Hosting an Embedded Jet

Triple source in serpens

Intermediate mass source **Direct observation**

VICO CICO **CHALMERS & VIRGINIA** itiatives on Cosmic Origin

Next Steps

Conclusions

Photoionized Dust Clumps

Dense Material Hosting an Embedded Jet

HH 80-81 Detection of linearly polarized radio emission

22

22 GHz Water Maser

Next Steps

Conclusions

Photoionized Dust Clumps

Dense Material Hosting an Embedded Jet

Proper Motion

Relative velocity of the jet

0.06" resolution

Observational proposal

 $V_{\rm PM}({\rm km}~{\rm s}^{-1}) = 4.74 D_{\rm kpc} {\rm PM}({\rm mas}~{\rm yr}^{-1}),$

Motivation

The Observations

Results

Discussion

Conclusions

Next Steps

Conclusions

Weak emission is detected on the southern lobe and isolated from upper sources

The wideband image (4-50 GHz) significantly improved the sensitivity

Although the nature of the emission from the region cannot be conclusively determined, we have restricted the emission from the candidate jet to two possible scenarios that align with largescale structures and the evolutionary phase indicated by the feedback effects of the sources.

Conclus emission possible so scale struct indicated

Riversidad de Antioquia

CICO VICO CHALMERS & VIRGINIA Initiatives on Cosmic Origins

THANK YOU!

Thanks to

VICO CICO **CHALMERS & VIRGINIA**

Next Steps

Conclusions

Conclusions

Viviana Rosero (Caltech) Joshua Marvil (NRAO) Kei Tanaka (Tokio Tech) Yichen Zhang (University of Virginia) Germán Chaparro (Universidad de Antioquia)

Red de Estudiantes Colombianos de Astronomía National Radio Astronomy Observatory Grupo de Fisica y Astrofisica Observacional UdeA

Motivation

De Buizer, J. M., Liu, M., Tan, J. C., et al. 2017, The Astrophysical Journal, 843, 33, doi: 10.3847/1538-4357/aa74c8 Urquhart, J. S., Hoare, M. G., Purcell, C. R., et al. 2009, Astronomy & Astrophysics, 501, 539, doi: 10.1051/0004-6361/200912108

Ortega, M. E., Paron, S., Cichowolski, S., Rubio, M., & Dubner, G. 2012, Astronomy & Astrophysics, 546, A96, doi: 10.1051/0004-6361/201219424

Tanaka, K. E. I., Tan, J. C., & Zhang, Y. 2016, The Astrophysical Journal, 818, 52, doi: 10.3847/0004-637X/818/1/5

Zhang, Y., Tan, J. C., Sakai, N., et al. 2019a, The Astrophysical Journal, 873, 73, doi: 10.3847/1538-4357/ab0553

Zhang, Y., Tanaka, K. E. I., Rosero, V., et al. 2019b, The Astrophysical Journal Letters, 886, L4, doi: 10.3847/2041-8213/ab5309

Rodríguez-Kamenetzky, A., Carrasco-González, C., Araudo, A., et al. 2016, The Astrophysical Journal, 818, 27, doi: 10.3847/0004-637X/818/1/27

Rosero, V., Tanaka, K. E. I., Tan, J. C., et al. 2019, The Astrophysical Journal, 873, 20, doi: 10.3847/1538-4357/ab0209

Cesaroni, R., Olmi, L., Walmsley, C. M., Churchwell, E., & Hofner, P. 1994, The Astrophysical Journal, 435, L137, doi: 10.1086/187613

Next Steps

Conclusions

