LA-CoNGA Physics 3er International Network School

Rafael Martínez (USB)

Alumni-2da Cohorte 2022

Antecedente

Condiciones singulares:

Pandemia

La Singularidad Venezolana Limitaciones de movilidad Limitaciones Regionales

Escuela de la Hechicera CEVALE2

LA-CoNGA Physics Módulo de Instrumentación - Proyectos Overview: Medición de la vida media del muón

Oscar Altuve (USB), Víctor Clarizio (UCV), Rafael Martínez (USB)

> Asesor: Prof. Dennis Cazar (USFQ) Mayo de 2022

Proyecto de Pasantía Muografía en la Industria Petroquímica

Rafael Martínez (USB), Tutores: Christian Sarmiento (UIS), Luis Nuñez (UIS)

12 de diciembre de 2023

Decrecimiento Forbush

M.Arteaga (UCV), M. Contreras (UCV), R. Martinez (USB)

LA-CoNGA-physics Asesor: Luis Nuñez

Junio, 2022

Universidad Industrial de Santander

LATIN-AMERICAN SCHOOL San Esteban, Chile 15 - 28 March 2023 **OF HIGH-ENERGY PHYSICS** CERN

EW

Collider Experiments: the LHC & Beyond Flavour Physics & CP Violation Heavy-Ion Physic QCD Higgs and Beyond **Neutrino Physics** Cosmology

Repositorio de clases y recursos

Vínculo previo

Karlsruher Institut für Technologie

- Culminación de las materias.
- Continuacion de mi pasantia a trabajo de grado
- Profesor contratado UC
- Ayudante Academico USB
- Colaborador de Mute2.0 UIS

- Valores agregados:
- Catalizador de experiencia de investigación.
- Networking exitoso en diferentes ámbitos (Acelerador)
- Oportunidad de desarrollar proyectos de impacto en la región.

Merci beaucoup pour tout laconga

Latin American alliance for Capacity buildiNG in Advanced **physics**

LA-CoNGA physics

Introducción y motivación

- → Desafío en la extracción y refinamiento del crudo pesado.
- → Reactores de hidrotratamiento.
- → Catalizador y altas temperaturas.
- Obstrucción: Acumulación de material en los poros.
- → Detección temprana de la obstrucción.
- → Modelos y técnicas de monitoreo.
- → Espectroscopia Raman o Infrarroja, absorción de rayos X. No son viables.

La obtención de una imagen de una estructura por medio de muones cósmicos.

Perfiles de densidad promedio

- H. Tanaka et al. Japanese volcanoes visualized with muography (2019)
 E.S ~(0.02
 -0.2) g/cm3 a 250 m a.s.l.
- H. Miyadera et al. imaging fukushima daiichi reactors with muons (2013)

S. Bouteille, et al., Nucl. Instrum. Methods A 834 (2016) 223.

Tanque de agua, lleno Izq., vacio der. 4 dias de exposicion, Hodoscopio de 0,25 m**2

Publicaciones de muografia en el tiempo, Cortesia: University of Glasgow Library

COSMIC-RAY MUOGRAPHY

¿Es factible utilizar la muografía como una técnica para medir y estudiar la dinámica de los procesos de refinamiento en reactores catalítico, con el fin de optimizar la eficiencia del refinamiento? Caracterización y simulación del <u>Fondo de Rayos</u> <u>Cósmicos.</u> Desarrollar diferentes modelos de <u>hodoscópios</u>.

> Desarrollar un modelo computacional estudiar la dinámica en las TCC.

Emular la <u>Torre de</u> <u>Craqueo Catalıtico.</u> Integrar el FRC, el hodoscópio y la TCC.

+

Pérdida de Energía en la Materia

Ionizacion

$$-\frac{dE}{dx} = K\frac{Z}{A}\frac{z^2}{\beta^2} \left[\frac{1}{2}\ln\frac{2m_e\beta^2\gamma^2 T_{\max}}{I^2} - 2\beta^2 - \frac{\delta(\beta\gamma)}{2} - 2\frac{C}{Z}\right]$$

Para muones de altas energías los procesos radiativos se vuelven predominantes : *Bremsstrahlung, Pares, Int. foto nucleares.*

E>708 GeV en SiO2

Adair and Kasha (1977):

$$\frac{-dE}{d\varrho} = a(E) + b(E)E$$

 $b(E)E < 10^{-2}a(E) \longrightarrow E < 100 GeV$

<u>**Groom et al. 2001**</u> Caracterización de a y b para diferentes Materiales

Simulación de Rayos Cósmicos y Detección

ARTI

Framework en C++, Fortran,Bash y Perl permite la integración entre MagnetoCosmics, CORSIKA y Geant4.

$$T_p, Z, A, \Omega) \simeq j_0(Z, A) \left(\frac{E_p}{E_0}\right)^{\alpha(E_p, Z, A)},$$

 $(0.1 - 10^6) \text{ GeV},$
 $E_{min} = m(Z, A) + 0.1 GeV$
 $\alpha \equiv \alpha(Z, A),$
 $j_0(Z, A, E_0 = 10^3)$
 $1 \le Z \le 26,$

Input

Muon flux

Objects:

Actions:

_

EAS

Atenuación del ruido

Parámetros geométricos del hodoscopio.

Opacidad $\varrho = \int_L \rho(\chi) d\chi = \rho \times L$

Flujo detectado $N(\varrho) = \Delta t \times T \times I(\varrho)$

Aceptancia

$$T(r_{ij}) = R(r_{ij}) \times \delta\Omega(r_{ij})$$

Resolución Espacial y Aceptancia 15 Barras

 $\underline{d(2\Delta y + D)}$

			Proyecc	ión por p	ixel [m]			_
- n	0.4	0.4	0.3	0.3	0.2	0.2	0.2	- 2.5
10 -	0.8	0.7	0.6	0.5	0.4	0.4	0.4	
tivo) [<i>m</i>] 15	1.2	1.0	0.8	0.7	0.6	0.6	0.5	- 2.0
ia al Objet 20	1.6	1.3	1.1	1.0	0.8	0.8	0.7	- 1.5
(Distanci 25	2.0	1.6	1.4	1.2	1.0	0.9	0.8	- 1.0
<u></u> м -	2.4	2.0	1.6	1.4	1.2	1.1	1.0	
- 35	2.8	2.3	1.9	1.6	1.4	1.3	1.2	- 0.5
	1.0	1.25	1.5 (Distancia	1.75 a entre par	2.0 neles) [m]	2.25	2.5	

Esquema de simulación

Análisis de coincidencias

Configuración para atenuación de flujo

Distancia entre paneles 1m para 15 barras $\Psi \approx 30^o$

Al inclinar el hodoscopio con se obtiene un $\ \varepsilon=30^o$

Obtenemos un ángulo de corte de

$$\theta_c = 90^o - 30^o - 30^o = 30^o$$

Filtrado de la inyección

Distancia entre paneles 1m para 15 barras

30 grados de inclinacion

5 metros de la torre

96 horas de flujo

Aprox 9 horas de exposición