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Summary

A brief history of cosmic rays

Cosmic rays




J.J. Thomson discovered the electron in 1897.

The indivisible has an internal
structure!

1906 Nobel Prize
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Wilson invented the cloud chamber.

1927 Nobel Prize

Wilson invented the particle detector cloud chamber and
recorded traces of ionisation. In 1900, he discovered the
continuous ionisation of the atmosphere. Its cause was
attributed to the Earth's natural radiation.
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Rutherford discovers the nucleus of the atom in 1911

Rutherford's gold foil ey 4@ Visual observation
experiment showed that the N\
atom is mostly empty space e :
with a tiny, dense, positively

charged nucleus.
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Victor Hess discovered - 1912

In 1912, Victor Hess used electroscopes to discover
that up to 700 m the ionisation rate decreases, but
then increases with altitude, showing that the origin
comes from outside the Earth.
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Millikan named it - 1925

1923 Nobel Prize

Compton
1927 Nobel Prize

In 1925, Millikan perfected the electroscope and took
measurements in lakes and mountains. He
introduced the term Cosmic Rays.

@he New Work imes

MILLIKAN RETORTS
HOTLY TO COMPTON
IN COSMIC RAY CLASH

Debate of Rival Theorists
Brings Drama to Session
of Nation's Scientists.

THEIR DATA AT VARIANCE

New Findings of His Ex-Pupil
Lead to Thrust by Millikan
at 'Less Cautious' Work.

Compton x Millikan



First electric particle counter: Geiger-Mueller

In 1908, Rutherford and Geiger

An Electrical Method of Counting the Nwmber of a-Particles
from Radio-active Substances.
By E Rurugrrorn, F.R.S., Professor of Physics, and H. Gricer, Ph.D,

John Harling Fellow, University of Manchester.

(Read June 18 ; MS. received July 17, 190§.)
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Rossi — Coincidence circuit — 1930

Nature 125, 636-636 (26 April 1930) | doi:10.1038/125636a0

Method of Registering Multiple Simultaneous Impulses

of Several Geiger's Counters

BRUNO Rossi
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Invention of the vacuum tube photomultiplier (PMT) - 1934

Physicists Harley lams and Bernard Salzberg, at the RCA (Radio Corporation of America)
laboratories, first PMT. PMT technology was perfected by Vladimir Zworykin (also at RCA) and
became a commercially viable device, although initially expensive.

Integration of a photocathode (photoelectric effect) and a single amplification
stage
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Extensive Atmospheric Showers - 1939

In the 1930s, Rossi carried out measurements with atmospheric showers.
« Auger using coincidence circuits discovers extensive atmospheric showers.

3 Energies greater than 101%eV !
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Fi1c. 1. Results with two parallel and horizontal counters,

Coincidence circuit with
horizontal detectors

JULY-OCTOBER, 1939 REVIEWS OF MODERN PHYSICS

Extensive Cosmic-Ray Showers

PIERRE AUGER
In collaboration with

P. EurenFesT, R, Mazg, J. Davpiy, RosLEy, A, FREON

Paris, France

Pierre Auger

VOLUME 11
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First experiments with EAS — 1946

1934: Bethe and Heitler develop
the electromagnetic cascade
theory, the particles observed on
the surface are secondary.

1946: Groups led by Bruno Rossi in
the United States and Georgi

Zatsepin in Russia began
experiments on the structure of
atmospheric showers. These

researchers constructed the first
experiments for detecting CAEs.

Grigory Zatsepin
setting up air shower detectors in Russia.
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Cesar Lattes - Discovery of the 1 Meson - 1947

Lattes improves nuclear emulsions and
detects m meson at Chacaltaya

Chacaltaya, 5,200
metres

protons

@ n+/- - u-l-/- +‘—,u

néutrons

What keeps the core cohesive?

Yukawa Short-range strong nuclear force

1949 Nobel Prize

Birth of the Standard Model
of Elementary Particles
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Scintillator + PMT (1950)

Hartmut Kallmann demonstrated that naphthalene (a component of mothballs) was a very efficient
scintillator. Soon afterwards, anthracene proved to be even better. This paved the way for future
plastic and liquid scintillators.

Scintillator + PMT

In 1950, Robert Hofstadter coupled Nal(Tl) crystals to RCA PMTs, creating the first

modern "scintillation counter®.

- Speed: The PMT + scintillator assembly was thousands of times faster than the
Geiger-Muller counters used at the time (nanoseconds).

- Energy measurement: the amount of light produced in the scintillator is
proportional to the energy deposited by the particle. Energy measurement.

- Coincidence Experiments: multiple detectors in line allow the particle's "flight
time" to be measured and its direction and speed to be determined.

Photomuiltiplier tube (PMT)
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scintillators and fast timing - 1953

Bassi, Clark and Rossi
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Scintillator: PMT and light guide
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diameter: 1 meter
thickness: 7.5 cm

Plastic scintillator

linear response (proportional to energy)
fast response (<0.2ns organic plastic scintillator)
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First Cherenkov detectors in the atmosphere — 1959

Chudakov conducts the first experiment
with cosmic rays of Cherenkov light in
the Earth's atmosphere, in the USSR.

charged
particle

Cherenkov

light
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First surface water Cherenkov
detectors — 1967

Haverah Park in the United Kingdom, in 1967, was the first major cosmic ray experiment
to use surface detectors based on water tanks (water-Cherenkov detectors, WCD) to

observe extensive atmospheric showers.
The Haverah Park arrangement covered approximately 12 km?, with more than 200 tanks

scattered across the ground.

Water from a tank after 25 years
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EAS experiments

Volcano Ranch EAS experiment,
New Mexico, USA (1960)
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2000 m a.s.1 (Gran Sasso, Italy) ' —— T - .
MULTI-COMPONENT ARhA‘I': : -

35 scintillator modules SQ m spacing F
Central muon/hadron calorimeter /

8 Cherenkov telescopes

3 Radio antennas

In operation in the 90s

Area 105 m? #

Energy range: 10%4-10%%ev. " ~ &
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G. Navarra, EAS-TOP experiment, Italy (1994) 19




Today: Cosmic rays in Latin America -1

Pierre Auger Observatory (Malargue,
Argentina) the world's largest ultra-high
energy cosmic ray observatory; array of 1,660
water tanks (surface detectors) + 27
fluorescence telescopes; several sub-
collaborations/structures  (AMIGA, HEAT,
AERA) to measure composition, muons,
energy.

LAGO — Latin American Giant Observatory
(distributed network)

network of Cherenkov detectors in water spread
across 10 Latin American countries. Focus: high-
altitude gamma-ray bursts, space weather
studies/Forbush decreases, and formation of an
educational-scientific network.

A Stable el
Deploying
L] Planned B 2o
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Today: Cosmic rays in Latin America-2

ALPACA (ALPAQUITA prototype) —
Andes / Chacaltaya (Bolivia) — project
under construction (Bolivia—Japan—
Mexico collaboration) for a large array
of air showers and muon detectors
targeting sub-PeV / PeV y-astronomy
in the Southern Hemisphere.

HAWC — High-Altitude Water
Cherenkov Observatory

(Sierra Negra, Mexico) — 300 large
altitude water detectors for very
energetic gamma rays and also
sensitive to cosmic rays in the TeV
range; operates continuously with a
large field of view.
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Today: Cosmic rays in Latin America-3

SWGO — Southern Wide-field
Gamma-ray Observatory
(Atacama, Chile — project under
development) — next generation
wide-field observatory in the
Southern Hemisphere (WCDs
concept in km? area); in final R&D
phase.

CTAO-Sul

The next major experiment in the
region is CTAO-South (Cherenkov
Telescope Array Observatory).
Atacama Desert, Chile. It will be the
southern location of the world's most
sensitive gamma-ray observatory.

22




LAGO & national development

L[]

Mestrado Daniel Consalter (2009), TANCA, Auger => CEO Fitinstrument
Complete development of magnetic resonance imaging
equipment

Leading company in the oil quality control market

Operates in 20 countries, 4 continents

L[]

SpecFIT technology analyzes Oils and Fats that

Nuclear Magnetic Resonance Technology
evaluate quality and adulteration in coffee

replace Trans Fat

https://fitinstrument.com/
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Cosmic rays Where to place the detector?




Energy spectrum of primary cosmic rays

J(E) =

dt dA dQ dE

-
o
'S

=
o
~

—
e
-

ll I] II Il ll II Il Il II II Il II I] II ll II Il l] II Il Il l] II ll ll I! II II l] II II II

P(E) (m? sr GeV sec)”
o
i

-
o
~

1 0-10

10"

101*

101*

10%

10%

10%

_*’4._.,. -

% ... Space-based
'%J,f experiments ...

-4 :
a4t f
X
Ty
¥
Ror o @
]

10° 10" 10" 10'? 10" 10™ 10" 10" 10" 10" 10" 10*

Log

Energy (eV)

x log scale

Log x log scale and x E%®

[

(=]
-

A

E*F(E) [GeV'®* m2 s1sr1]
=

-
=
T

'''''''''''''

s 0o 0De 0o0BDOOCaAD

1
10

10" 10
E [eV]

1 10" 10 10"

These features carry important information
on the acceleration and transport of CRs.

F(>

F(> 10" eV) ~ 1 particlefyear m®

F(> 10% eV) 2 1 particle/century km? .

107 V) =~ 1000 particles/s m* ,
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Energy spectrum of cosmic rays
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Effect of the solar cycle on cosmic rays
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GeV cosmic rays and solar cycle
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Primary cosmic ray flux - direct and indirect

measurements
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EAS observation techniques
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Ground particle detectors used in EAS detection

Faixa de
Componente | energia tipica = T EEEET :
x5
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Atmospheric optical detectors used in EAS detection

Cherenkov Telescopes

Tipo Componente Faixa Resolugao Vantagens Limitacoes Experimentos
medida
Otima
separagao Operagao
Telescopios tﬁerenkov 10" - 10" eV E)r(mcillzrr,t: gama/hadrdo, | somente em | HESS, MAGIC,
IACT == (TeV) 8 = baixissimo noites claras | VERITAS, CTA
atmosférica energética ki
limiar de e escuras
energia
Diffuse Cherenkov
Tipo Faixa Resolugao Vantagens Limitacoes Experimentos
Deteccao de e Array barato Ejr';(: resolugac,
Cherenkov no 10" -10" eV para grandes = BLANCA, TUNKA
moderada 3 dependéncia
solo areas e
atmosférica
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Atmospheric fluorescence detectors and radio waves used in EAS detection

Tipo Cmoer;\ip:jznente Faixa Resolucao Vantagens LimitacOes Experimentos
Perfil e Medicao S6 opera em SR
Telescopios longitudinal St calorimétrica | noites claras D TA FDg
de da cascata 107 — 10%° eV zner . direta, 6tima | e sem Lua Fl ”s Eve ;
fluorescéncia | (EM = og para (~10% duty YEEYE:
- (~15%) .N HiRes
dominante) composicao cycle)
C . N ettty :
Tipo moen;:::joanente Faixa Resolucao Vantagens Limitagoes Experimentos
Opera 24/7, oo LOFAR, AERA
Antenas de Radiacdo Boa para baixo custo, = qresséo 1o (Auger),
radio (30-80 | geomagnétic | 10'®*—10" eV | direcdoe boa ruz:lo CODALEMA,
MHz) a da cascata Xmax estimativa de GRANDProto
humano (RFI)
Xmax 300

34




Extensive Air Shower - EAS

prmary particle —»
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EAS - gamma, proton e iron
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Composition of primary cosmic rays
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Lateral and longitudinal development of an EAS

Vertical proton of 101° eV
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Fig. 4.10 Average a lateral and b longitudinal shower profiles of the hadronic, muonic and
electromagnetic components generated with the CORSIKA code. The showers are induced by
vertical protons of energy 10!° eV. The lateral distribution of the particles at ground level is
calculated for 870 gcm™2, the depth of the Pierre Auger Observatory (Sect. 7.8). Only photons
and e* with energy larger than 0.25MeV are followed in the simulation. For muons and hadrons,
the energy threshold is 100 MeV
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Trigger for detectors on the Earth's surface

Trigger:

temporal coincidence of the
pulse of N detectors.

EAS detector
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Muons from atmospheric showers

Raio Coésmico primario
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Muon spectrum at the surface
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Vertical flow in the atmosphere
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Vertical integral intensity

The integral intensity of vertical muons above 1 GeV/c at sea level is = 70 m—2s—1sr-1
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Angular distribution of muons
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