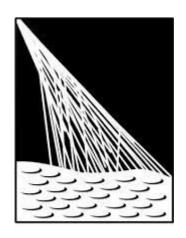
LABORATORIO PARA LA INVESTIGACIÓN DE DETECCIÓN DE RADIACIÓN Y ASTROPARTÍCULAS

Los grandes problemas no tienen título

Los grandes retos no preguntan qué estudias, necesitan de todos


LIDeRA

Visión

Ser un laboratorio líder en la investigación y aplicación de astropartículas y radiación, impulsando innovación científica y tecnológica con impacto local y global.

Misión

Investigar y aplicar el estudio de radiación y astropartículas para crear soluciones que respondan a desafíos científicos, industriales y sociales, consolidando redes de colaboración internacionales.

La universidad al ritmo que marca la ciencia

Senior: Prof. Luis Núñez

Postdoc: Prof Christian Sarmiento

Est. Doctoral: M.Sc. Yessica Dominguez

Est. Doctoral: M.Sc. Alex Martínez

Est. Doctoral: M.Sc. Jaime Betancourt

Est. Doctoral: M.Sc. Rafael Martínez

Est. Maestría: Ing. Luigi Miranda

Est. Maestría: Ing. Jorge Perea

Est. pregrado: Robert Orcasitas

Est. pregrado: Daniela Vasquez

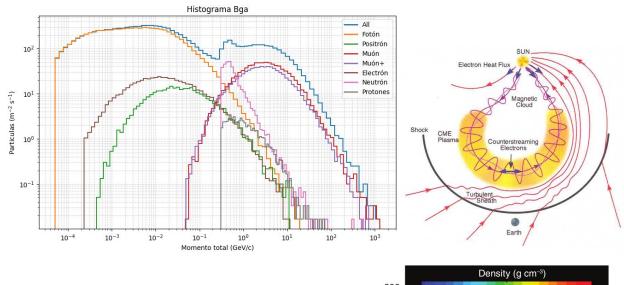
Est. pregrado: Darling Sandoval

Est. pregrado: Laura Valentina

Est. pregrado: Jurianny Andica

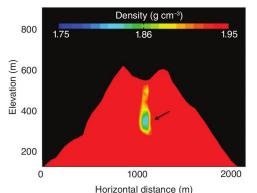
Est. pregrado: Jhon Almanzar

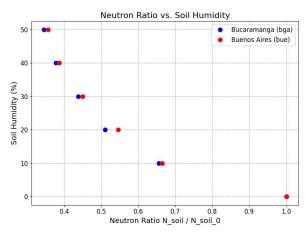
Est. pregrado: Christian Orduz

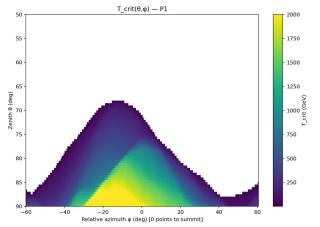

Ing. Jhonathan Pizco

Ing. Diego Castillo

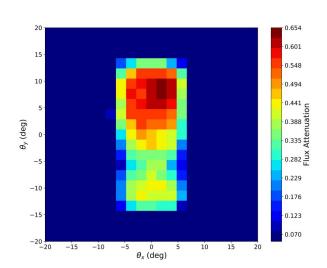
Est. pregrado: Maria Fernanda Ruiz

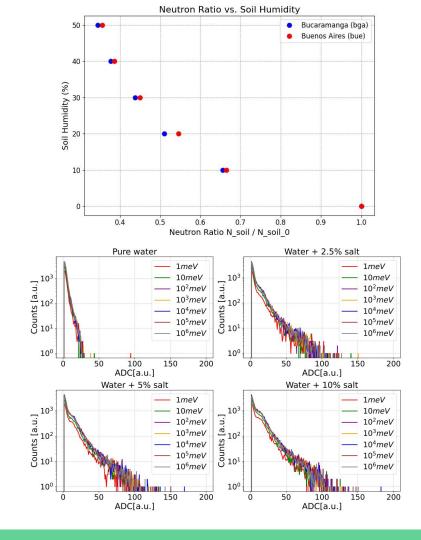

Est. pregrado: Juan David


Aplicaciones en favorable desarrollo hoy



- Clima espacial
- Detección de Humedad





Simulación

- MEIGA
- ARTI

Simulaciones perspectivas futuras

Exploración de modelos atmosféricos y hadronicos

Evaluar cómo diferentes modelos modifican la predicción del flujo de secundarios.

Nuevas aplicaciones emergentes

Estudiar el impacto del flujo de fondo en tecnologías sensibles, como supercomputadores cuánticos.

Expansión de escenarios de estudio

Extender el framework a estructuras como represas, glaciares o infraestructura crítica.

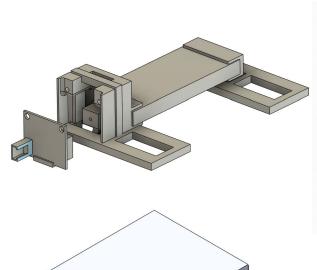
Integración de nuevos detectores

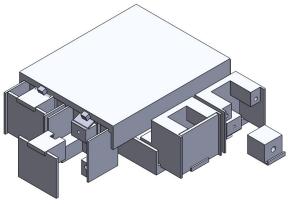
Simular arquitecturas detectoras para nuevos desarrollos.

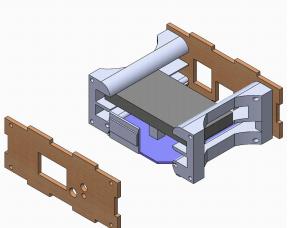
Optimización de modelos

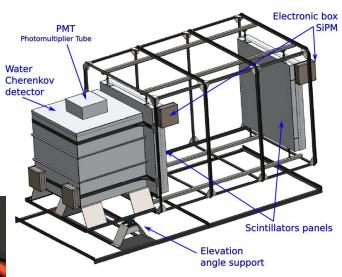
Desarrollar aproximaciones más ligeras que reduzcan la dependencia de simulaciones intensivas y aceleran la obtención de resultados.

Instrumentación


MuTe


WCD


• CW


Diseño

Instrumentación perspectivas futuras

Adaptación de arquitecturas existentes

Sal al WCD actual como optimizarlo para clima espacial.

• Configuraciones híbridas

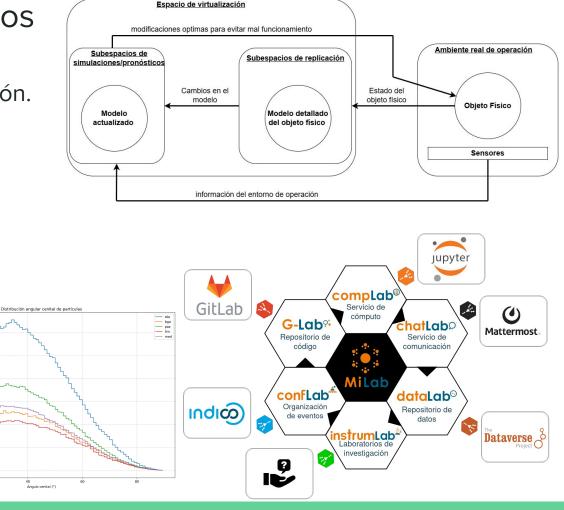
Combinar hodoscopios de centelleo con detectores Cherenkov para mejorar la discriminación de rayos cósmicos y señales de fondo.

Diseño y desarrollo electrónico

Implementar PCBs y sistemas de adquisición más compactos, escalables y de bajo consumo para pruebas en campo.

Nuevos prototipos y modularidad

Construir detectores modulares que permitan reconfiguración rápida según el objetivo experimental.


Integración con colaboraciones

Preparar instrumentación compatible con redes internacionales (LAGO, Bongo), asegurando interoperabilidad y estandarización.

Gestión, acceso y uso datos

- Preprocesamiento y organización.
- Validación y curación.
- Calibraciones in situ.
- Acceso abierto y compartido.
- IA
- Gemelos digitales

Espectro de partículas (comparación)

