

Aplicaciones de la muografia en la Ind. Petroquímica

R. A, Martinez Rivero Tutor: C. Sarmiento-Cano UIS Co-tutores: J. Stephany USB

Universidad Industrial de Santander

Introducción y motivación

- Desafío en la extracción y refinamiento del crudo pesado.
- → Reactores de hidrotratamiento.
- Catalizador y altas temperaturas.
- Obstrucción: Acumulación de material en los poros. <u>fouling</u>
- Detección temprana de la obstrucción.
- → Modelos y técnicas de monitoreo.
- → Espectroscopia Raman o Infrarroja, absorción de rayos X. No son viables.

¿Es factible utilizar la muografía como una técnica para medir y estudiar la dinámica de los procesos de refinamiento en reactores catalítico, con el fin de optimizar la eficiencia del refinamiento?

Pérdida de Energía en la Materia

Ionizacion

Para muones

$$\begin{array}{ll} \text{Ionizacion} & -\frac{dE}{dx} = K(\rho) \frac{Z}{A} \frac{z^2}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e \beta^2 \gamma^2 T_{\max}}{I^2} - 2\beta^2 - \frac{\delta(\beta\gamma)}{2} - 2\frac{C}{Z} \right] \\ \\ \text{Para muones de altas energías los procesos radiativos se vuelven predominantes : Bremsstrahlung, Pares, Int. foto nucleares. \\ \text{E>708 GeV en SiO2} \\ \text{Adair and Kasha (1977):} \\ \frac{-dE}{d\varrho} = a(E) + b(E)E \\ b(E)E < 10^{-2}a(E) \longrightarrow E < 100 GeV \end{array}$$

Groom et al. 2001 Caracterización de a y b para diferentes Materiales

Detectores de partículas cargadas

- Emulsiones Nucleares
- Gaseosos
- Centelleo
- Cherenkov

Muografia

La obtención de una imagen de una estructura por medio de muones cósmicos.

Perfiles de densidad promedio

 H. Tanaka et al. Japanese volcanoes visualized with muography (2019)
E.S ~(0.02 -0.2) g/cm3 a 250 m a.s.l.

H. Miyadera et al. imaging fukushima daiichi reactors with muons (2013)

S. Bouteille, et al., Nucl. Instrum. Methods A 834 (2016) 223.

Tanque de agua, lleno Izq., vacio der. 4 dias de exposicion, Hodoscopio de 0,25 m**2

COSMIC-RAY MUOGRAPHY

Publicaciones de muografia en el tiempo, Cortesia: University of Glasgow Library

Desarrollar un modelo computacional estudiar la dinámica en las RLF. Caracterización y simulación del <u>Fondo</u> <u>de Rayos Cósmicos.</u> Desarrollar diferentes modelos de <u>hodoscópios</u>.

Emular un <u>reactor de</u> <u>lecho fijo.</u> +

Integrar el FRC, el hodoscópio y el RLF.

MuTe: Muon Telescope.

Calibration and first measurements of MuTe: a hybrid Muon Telescope for geological structures . Jesús Peña-Rodríguez, et all.

Simulated Response of MuTe, a Hybrid Muon Telescope. A. Vásquez-Ramírez et all.

MiniMuTe: A muon telescope prototype for studying volcanic structures with cosmic ray flux. H. Asorey. et all.

Simulación de Astropartículas y Detectores.

toolkit de simulación de eventos utilizado en la investigación de física de partículas y aplicaciones afines.

- Variedad de procesos: Ópticos, decaimientos, Radiativos, transporte de neutrones, etc.
- Alta Modularidad y personalización.
- Posibilidad de interfaz gráfica.
- Simulaciones Robustas.
- Alto poder de computo.
- Problemas de compatibilidad.
- Extensión no trivial para grandes proyectos.

ARTI

Framework en C++, Fortran, Bash y Perl permite la integración entre MagnetoCosmics, CORSIKA y Geant4.

ARTI

Framework en C++, Fortran, Bash y Perl permite la integración entre MagnetoCosmics, CORSIKA y Geant4.

The ARTI framework: cosmic rays atmospheric background simulations Christian Sarmiento-Cano, et all. ¹⁷

Meiga, a Dedicated Framework Used for Muography Applications A. Taboada, et all.

MEIGA

Integra el cálculo del <u>flujo</u> de rayos cósmicos, la <u>propagación</u> de partículas a través de materiales y la simulación de la <u>respuesta</u> del detector.

Physics List: QGSP_BERT_HP

Resultados Preliminares

EAS

Respuesta del detector

Diseño con blindaje

Atenuación del ruido

Visualización de objetivo Pb. Flujo Monocromático 1 GeV

24

Parámetros geométricos del hodoscopio.

Opacidad $\varrho = \int_L \rho(\chi) d\chi = \rho \times L$

Flujo detectado $N(\varrho) = \Delta t \times T \times I(\varrho)$

Aceptancia

$$T(r_{ij}) = R(r_{ij}) \times \delta\Omega(r_{ij})$$

Aceptancia

26

Resolución Espacial y Aceptancia 15 Barras

 $\underline{d(2\Delta y + D)}$

Proyección por pixel [<i>m</i>]													
- N	0.4	0.4	0.3	0.3	0.2	0.2	0.2	- 2.5					
0I -	0.8	0.7	0.6	0.5	0.4	0.4	0.4						
tivo) [<i>m</i>] 15	1.2	1.0	0.8	0.7	0.6	0.6	0.5	- 2.0					
ia al Objet 20	1.6	1.3	1.1	1.0	0.8	0.8	0.7	- 1.5					
(Distanc 25	2.0	1.6	1.4	1.2	1.0	0.9	0.8	- 1.0					
<u></u> м -	2.4	2.0	1.6	1.4	1.2	1.1	1.0						
35	2.8	2.3	1.9	1.6	1.4	1.3	1.2	- 0.5					
	1.0	1.25	1.5 (Distancia	1.75 a entre par	2.0 neles) [m]	2.25	2.5						

Esquema de simulación

Análisis de coincidencias

Configuración para atenuación de flujo

Distancia entre paneles 1m para 15 barras $\Psi \approx 30^o$

Al inclinar el hodoscopio se obtiene un $\ \varepsilon = 30^o$

Obtenemos un ángulo de corte de

$$\theta_c = 90^o - 30^o - 30^o = 30^o$$

Filtrado de la inyección

Distancia entre paneles 1m para 15 barras

30 grados de inclinacion

5 metros de la torre

96 horas de flujo

Aprox 9 horas de exposición

- Flujo monocromático electrones, hasta 5 cm de Pb.
- Flujo monocromático de muones, hasta 5 cm Pb.

 Simulación con y sin filtrado angular.

- Revisión del repositorio de la torre de hidrotratamiento.
- Simulación Integrada.

Backup

Comportamiento de la estadística

6 Horas de Flujo 12 Barras

Ace<u>p</u>tancia 15 Barras

30 Barras, 10 y 5 Muones Machi

30 Barras y 15. A 5 Muones

RESOLUCION ESPACIAL

$$\tan(\omega_1 + \omega_2) = \frac{|PR|}{|OP|} = \frac{d(N - (i+1))}{D} = \frac{x + \Delta x}{\Delta y + D}$$
$$\tan(\omega_2) = \frac{|QP|}{|OP|} = \frac{d(N - i)}{D} = \frac{x}{\Delta y + D}$$
$$\Delta x = \frac{d(2\Delta y + D)}{D}$$

PROYECCIÓN ESPACIAL

 $\Delta x = \frac{d(2\Delta y + D)}{D}$

PROYECCIÓN ESPACIAL PANEL

Para la TCC

Proyección por pixel $[m^2]$ 0.2 0.4 0.4 0.3 0.3 0.2 0.2 <u>ں</u> -10 0.4 0.4 0.7 0.6 0.5 0.4 (Distancia al Objetivo) [*m*] 15 1.2 0.7 0.6 0.6 0.5 20 1.6 0.8 1.3 1.1 0.7 25 2.0 1.6 1.4 1.2 1.0 0.8 90 -2.0 1.6 1.4 1.2 1.1 35 2.8 1.9 1.6 1.4 1.3 1.2 1.5 2.0 2.5 1.75 2.25 1.25 1.0 (Distancia entre paneles) [m]

- 2.5

- 2.0

- 1.5

- 1.0

- 0.5

51

Distancia entre Paneles 2 m Distancia al Obj 10 m, Resolución Espacial 0,4 m, Proyección de 6 m, Aceptancia Max: 1,44 cm^2 sr, radio de inyección 4 m.

Distribucion angular de conteos, 16 Horas

Misma configuración, pero sin el cilindro (Fondo)

Elemento flost64	Frecuencia_y1_y int 1 - 178	Frecuencia_y2_y fl 0.0 - 192.0	
0	178	139	
-0.5729386977	163	135	
0.2864765103	160	148	
0.5729386977	153	181	
-0.2864765103	144	148	
0.8593722436	138	192	
1.145762838	136	145	
-0.8593722436	128	116	
-1.145762838	119	84	
1.432096184	101	110	

Constraint in the second second

Disminución del flujo angular

2 -								Ti	raye	ecto	oria	s Ui	nica	s										1
-8 -																								
5 -																								
6 -																-								
4 -																								- 0
2 -																								
5 -																								
5 -																								
8 -																								1
9 -														1										1
6 -																								
5 -															D	e.								
8 -																								
5 -																							-	2
5 -							1	0			0													
2 -								L.																
4 -											h													
4 -								1				_			_									
7 -															-								-	3
5 -																								
4 -																								
8 -																								
1 -																								
/31580433 -	362450522 -	359689934 -	161272505 -	07201217 -	128298503 -	530466729 -	256830545 -	501868953 -	37600627 -)76834859 - <mark>-</mark>	36830656 -	102770745 -	976834859 -	37600627 -	341646465 - <mark>-</mark>	16554572 -	32105904 -	07201217 -	161272505 -	359689934 -	360672928 -	/31580433 -		4

 $\Phi(F) - \Phi(O)$ $\Phi(F)$

Condición de viabilidad.

$$\Delta T \times \mathcal{T} \times \frac{\Delta I^2(\varrho_0, \delta \varrho)}{I(\varrho_0)} > 1$$

$$\Delta I(\varrho_0, \delta \varrho) = \Phi[E_{\min}(\varrho_0)] \times \left. \frac{\mathrm{d}E_{\min}}{\mathrm{d}\varrho} \right|_{\varrho=\varrho_0}$$

$$\begin{array}{ll} E_{\min} & \operatorname{GeV} \\ \Phi & \operatorname{cm}^{-2}\operatorname{sr}^{-1}\operatorname{s}^{-1}\operatorname{GeV}^{-1} \\ \gamma & \in \mathbb{R} \\ A \\ I & \operatorname{cm}^{-2}\operatorname{sr}^{-1}\operatorname{s}^{-1} \end{array}$$

minimum muon energy to cross a given opacity differential flux of muons power-law exponent of differential spectrum scale factor (i.e. amplitude) of differential spectrum integrated flux

Hydrotreating Unit

